Author: Piquet, O.
Paper Title Page
THPB031 Status Report on the French High-intensity Proton Injector Project at SACLAY (IPHI) 921
  • B. Pottin, M. Desmons, A. France, R. Gobin, O. Piquet
    CEA/DSM/IRFU, France
  The construction of IPHI (High Power Proton Accelerator) is in its final step of installation. The high intensity light ion source (SILHI) has been built first to produce regularly CW high intensity (over 100 mA) proton beams. The low energy front end of IPHI is based on a 352 MHz, 6 m long Radiofrequency Quadrupole (RFQ) cavity. The RFQ will accelerate beam up to 100 mA with energy up to 3 MeV. A diagnostics line has been designed to measure all the main characteristics of the beam at the RFQ output. In this paper we will present the status for the main components of the injector, in particularly the RFQ fabrication and the RF power facilities.  
THPB038 Assembly and RF Tuning of the Linac4 RFQ at CERN 939
  • C. Rossi, A. Dallocchio, J. Hansen, J.-B. Lallement, A.M. Lombardi, S.J. Mathot, D. Pugnat, M.A. Timmins, G. Vandoni, M. Vretenar
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, Y. Le Noa, J. Novo, O. Piquet
    CEA/DSM/IRFU, France
  The fabrication of Linac4 is progressing at CERN with the goal of making a 160 MeV H beam available to the LHC injection chain as from 2015. In the Linac4 the first stage of beam acceleration, after its extraction from the ion source, is provided by a Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane kind, has been designed in the frame of a collaboration between CERN and CEA and has been completely machined and assembled at CERN. The paper describes the assembly of the RFQ structure and reports the results of RF low power measurements, in order to achieve the required accelerating field flatness within 1% of the nominal field profile.