Author: Hardy, P.
Paper Title Page
MOPB074 Thermo-Mechanical Simulations of the Frequency Tuning Plunger for the IFMIF Half-Wave Resonator 351
  • N. Bazin, P. Bosland, S. Chel, G. Devanz, N. Grouas, P. Hardy, J. Migne, F. Orsini, F. Peauger
    CEA/DSM/IRFU, France
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), a superconducting option has been chosen for the 5 MeV RF Linac of the first phase of the project (EVEDA), based on a cryomodule composed of 8 HWRs, 8 RF couplers and 8 Solenoid packages. The frequency tuning system of the IFMIF HWR is an innovated system based on a capacitive plunger installed in the electric field region allowing a large tuning range. Following the cold test results obtained on HWR equipped with the first design of plunger in 2011*, it was decided to develop a new design of a fully-niobium plunger. The paper will present the development of the new plunger concepts and the thermo-mechanical simulations. For the mechanical simulations, the aim is to sufficiently deform the plunger to tune the cavity while staying in the elastic range of the niobium material. For the thermal simulations, all the non-linear properties of the materials and the effects of the RF fields are taken into account: thermal conductivity and surface resistance are depending on the temperature, RF fields computed with dedicated software are leading to thermal dissipations in the materials and the vacuum seal.
* F. Orsini et al., “Vertical tests preliminary results of the IFMIF cavity prototypes and cryomodule development”, SRF 2011, Chigaco, USA