Quantum Efficiency Improvement of Polarized Electron Source using Strain compensated Superlattice photocathode

N. Yamamoto1,
X.G. Jin1, T. Miyauchi3, A. Mano2, M. Hosaka2,
Y. Takashima2, M. Yamamoto1 and Y. Takeda4,3

1. High Energy Accelerator Research Organization (KEK),
2. Synchrotron Radiation Research Center, Nagoya University,
3. Graduate School of Engineering, Nagoya University,
Outline

1. Introduction
2. Problem of Conv. PES PC
3. Strained Compensated PC
4. Exp. Results.
5. Summary

PES: Polarized Electron source
PC: Photocathode

Ref. X.G.Kim, et al., APL (2014)
Essential for future linear colliders (LCs) and electron-ion colliders (EICs)

Table. Requirement Parameters for Electron source

<table>
<thead>
<tr>
<th></th>
<th>LC (ILC)</th>
<th>EIC (eRHIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Polarization</td>
<td>> 80 %</td>
<td>> 80 %</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>4.8 nC</td>
<td>3.5 nC</td>
</tr>
<tr>
<td>Average Current</td>
<td>63 μA</td>
<td>50 mA*</td>
</tr>
<tr>
<td>Life time</td>
<td>> 2 weeks</td>
<td>long</td>
</tr>
</tbody>
</table>

High ESP & high QE

(Electron Spin Polarization) (Quantum Efficiency)

have to be simultaneously realized.
1-2. Past developments

NEA-GaAs type Polarized Electron Source

GaAs-GaAs$_x$P$_{1-x}$ \textit{Strained SL}

\textbf{Transmission type photocathode}

\textbf{Strain-Compensated SL}

- High ESP ($> 90\%$) & QE ($\sim 0.5 \%$)

 T. Nakanishi et al., NIM A. \textbf{455} (2000)

- Low Thermal Emittance

- High Brightness [IPAC2011’s Talk]

- High ESP (92%) & High QE (1.6%)

 [This talk]

 X.G.Kim, et al., APL (2014)
1. At the SL layers, electrons are pumped by *Circularly polarized laser* from the valence band to the conduction band.

2. Excited electrons are diffused to PC surface.

3. Electrons are emitted through the *NEA surface*.

3 step model for electron emission:

1. Optical pump
2. Diffusion at conduction band
3. Emission from NEA surface
To realize high ESP & high QE, keeping \underline{Strain SL structure & High Crystalline quality at the same time} is key.

To obtain \textbf{high ESP},
Large band split between HH & LH bands is required and obtained by introducing \textbf{Strain & SL structures}.

By the way,
\textbf{QE} is directly affected by \textbf{Crystal Quality} and \textbf{SL Thickness}.
Strain & SL are essential for High ESP, but bringing Bad crystal quality. (Low QE)

Strained SL

Fig. TEM image of GaAs/GaAsP Strain SL PC

Ref. X.G.Kim, et al., JAP (2010)

3. Strain–Compensated SL

Strained SL

- SL Layer
- Buffer layer
- Substrate

GaAsP
Strained GaAs

Strain-compensated SL

- SL Layer
- Buffer layer
- Substrate

GaAsP
Strained GaAs

ε_{GaAs} = 1.2
ε_{GaAsP} = 0
L_{GaAs} ≈ L_{GaAsP} = 4nm

ε_{GaAs} = 0.6
ε_{GaAsP} = -0.6
L_{GaAs} ≈ L_{GaAsP} = 4nm

Net strain ≈ 0

No strain accumulation

Net strain

$$\frac{\varepsilon_{GaAs} \cdot L_{GaAs} + \varepsilon_{GaAsP} \cdot L_{GaAsP}}{L_{GaAs} + L_{GaAsP}}$$

ε: Strain values for each SL layer
L: Thickness period of each SL layer

High Crystal Quality
- Higher ESP
- Higher QE (Thickness SL layers)
4. EXPERIMENTAL RESULT
4-1. GaAs-GaAsP Strain-compensated SL

GaAs-GaAsP Strain–Compensated SL

Al_{0.1}Ga_{0.9}As_{0.81}P_{0.19} Buffer Layer:
- Lattice constant → medium value between GaAs and GaAsP
- Band gap energy (1.77eV) → higher than that of SL layers

Buffer Layer:
- Medium value between GaAs and GaAsP
- Band gap energy (1.77eV) → higher than that of SL layers

Ref. X.G. Kim, et al., APL (2014)
4-2. Performances of Strain–Comp. SL

SL Thickness Dependence

- We succeed to fabricate the Strain-Compensated SL PC.
- ESPs of ~90% are obtained below the thickness of 288 nm.
- QE increases proportionally below the thickness of 500 nm.
- QEs are improved by using Atomic Hydrogen Cleaning.

* The polarization was measured with back-side laser illumination.
4-2. Performances of Strain–Comp. SL

- Best Data (Tentative, 24-pair (192 nm) PC)

ESP : 92%, QE : 1.6%

Ref. X.G.Kim, et al., APL (2014)
Spin-resolved QE Analysis

\[QE_{L(R)} = \frac{QE(1 \pm ESP)}{2} \]
4-3. Analysis of Crystal Quality from ESP-QE Spectra

- Cond. Band Min.
- HH Band (Valence)
- LH Band (Valence)
- Band Gap
- Mini Band Split
- Band Split of HH & LH

Graphs showing:
- Band Gap Energy [eV] vs. SL Thickness [nm]
- Band Width (conv. Conduction band) [meV] vs. SL Thickness [nm]
- Band Split of HH & LH [meV] vs. SL Thickness [nm]
4-4. Discussion of ESP degradation

Degradation of Spin polarization

Spin relaxation during diffusion process (time constant: 140 ps *1)

The polarization is measured with back-side laser illumination.

Observed degradation is understood by spin relaxation during electron transport process.

GaAs/GaAsP Strain-compensated SL PCs have been developed and were successfully fabricated.

- Up to 90 pairs (720 nm) Thickness PCs were tested.
- The QEs increase proportional to the SL thickness.
- Strain-compensated SL effectively prevents strain accumulations.
 - No Serious Degradation of Crystalline quality was observed.
- For thicker PCs, Spin relaxation effect limits the ESP value.
 - Spin relaxation time: 140 ± 12 ps

Up to now, Using the 24-pair (192 nm) PC,
ESP of 92 % & QE of 1.6 % were achieved.
(3 times higher than conv. PC)

In future, optimizing the SL thickness,
Further QE Improvement is expected.