ESS Target Facility Design

John Haines
for the ESS Target Project Team

www.europeanspallationsource.se
May 7, 2015
Outline

• Background

• Status of technical systems

• Project status and plans
ESS will be the most powerful spallation source in the world.

Linear proton accelerator
- Energy: 2 GeV
- Rep. Rate: 14 Hz
- Current: 62.5 mA
- Pulse length: 2.86 ms

Target
- Peak neutron brightness \(~30-100 \times \text{ILL}\)

Neutron science systems
- 16 Instruments in Construction budget
- Committed to deliver 22 instruments by 2028
ESS funding is in place and construction is underway
• Convert protons to neutrons

• Remove heat – 5 MW

• Protect public, workers, and environment from radioactive hazard
Selected technologies

- Convert protons to neutrons
 - Spallation source material – W
 - Liquid H$_2$ and H$_2$O moderators + Be reflector convert neutrons to low energy
 - Neutron beam ports transport neutrons to instrument beam lines
- Remove heat deposited by 5 MW proton beam
 - He and water cooling systems
- Protect public, workers, and environment from radioactive hazard
 - Shielding allows hands-on access outside monolith
 - Fluid purification and ventilation systems control radioactive inventory
 - Remote Handling Systems provide capability to handle activated equipment
 - Remove/replace, store, and process for disposal spent targets, moderator/reflector plugs, proton beam windows, ...
 - Safety-credited, active controls shut-off beam for certain off-normal conditions
Status of Target Project

• Most Target Station systems are nearing completion of preliminary design; some are in detailed design phase

• Major hardware systems will be provided as in-kind contributions
 – In-Kind partners selected for 8 of 25 Target Project systems
 – Partners for most of the remaining systems will be in place by the end of 2015
Spallation Target is a Helium-Cooled Tungsten Wheel

- To handle the 5 MW proton beam power the target needs to be moving, e.g. flowing liquid metal or rotating wheel
 - ESS has chosen the rotating wheel concept based on its simplicity and long lifetime
 - Helium selected as coolant because of its inert nature and no phase change concerns
 - Tungsten chosen for its neutron production and high temperature capability
 - 60 n/p at 2 GeV
Key parameters for Target Wheel

- Wheel diameter 2.5 m
- Shaft length > 5 m places drive unit far from high radiation region
- Tungsten bricks arranged in 36 sectors
- Rotational speed ~ 0.4 Hz
- Lifetime of 5 years at 5 MW based on radiation damage
 - 10 dpa damage to stainless steel vessel
Target wheel design concept finalized and detailed design underway

- **ESS-Bilbao** is our in-kind partner for the Target Wheel scope
 - New design concept is simpler, more manufacturable, and has lower temperatures and stresses
 - Tungsten stress < 100 MPa
 - Tungsten temp < 400 °C

TDR design (2013): Plate geometry with “S” flow

New baseline design (2015): Brick geometry with highly parallel flow

~ 7000 – 10 × 30 × 80 mm³ tungsten bricks
Helium Cooling System Uses Standard Commercial Equipment

- Target He Cooling System parameters:
 - Mass flow 3 kg/s
 - Pressure 1.0 MPa
 - Inlet/outlet temperature 40/230 °C
- Change in He pressure from 3.5 (2013-TDR) to 10 bar (new baseline) allows use of commercial off-the-shelf process gas blowers as circulator
 - Robust, few rotating parts
 - Higher mechanical stresses on vessel and more He leakage, but well within allowable values
TDR (2013) “Volume” Moderators

- Liquid H₂ for cold neutrons and water moderators for thermal neutrons
- Be reflector
- 2 x 60° viewing angle (not all instruments can view a given moderator)
- Top and bottom moderators identical
- Thermal moderator far from “hot spot”
Moderator studies identified potential for huge increase in cold neutron brightness

“Pancake” moderator idea showed benefit of flat moderators

--- but thermal wings still far from “hot spot”
“Butterfly” Moderators (New Baseline) Optimizes Cold and Thermal Neutron Brightness
Moderator and Reflector Engineering Also Evolved Since TDR

- Short lifetime for moderator/reflector plug means that replacement of plug needs to be as simple as possible
- Complexity of remote handling for the TDR concept was a serious concern
 - Required removal of large pieces of shielding and horizontal motion to clear the wheel before lifting
- New “twister” concept uses a rotational motion to clear the wheel, and requires significantly less removal and replacement of shielding
“Twister” concept incorporates two butterfly moderators

- 3 cm tall butterfly on top
- 6 cm tall butterfly on bottom
- $2 \times 120^\circ$ flight path openings for both moderators – all instrument positions can view either moderator
- Property changes due to transmutation (1 a% Si in Al structure) limits the lifetime to one year
- Issues being actively addressed:
 - Flat moderators require precise alignment to the neutron guides
 - LH$_2$ cooling feasibility established; optimization studies ongoing
 - Manufacturing studies underway (Al-6061 welding)
Monolith systems
Optimization of neutron beam extraction system

- 11 m diameter
- 6,000 tonnes of steel shielding
- He atmosphere inside vessel

- Average of 6° angular spacing between beam ports (42 ports available)
- Double decker beam inserts provide possibility to view either upper or lower moderator
Target Project Summary Schedule

Global & Project MS
- Target Bldg Access for Monolith Installation
- Ready for Beam on Target

Moderator and Reflector (MR) Assemblies
- Select In-Kind Partner
- Target critical path goes through Moderator-Reflector System

Design
- PDR
- CDR

Procure
- Award Contract
- Delivery to Site

Install & Test
- Installation & Sys Tests Complete
- Ready for Beam

Near term efforts focused on:
- Securing in-kind partners
- Finishing preliminary design
- Providing initial hardware to integrate with Target Building construction
Technical challenges are under control but significant risks remain

• Uncertain nuclear regulatory environment --- Sweden does not have similar facilities
 – Hired safety experts to help focus on hazards and accident analyses
 – Regularly engaging with regulator (SSM) though the ESS ES&H team

• Difficulty securing in-kind partners
 – Developed set of discreet In-Kind packages with well defined deliverables and partner selection need dates
 – Working with ESS In-Kind Management team to define and execute partner selection process

• Concerns about executing project with so much scope provided by in-kind partner
 – Incorporating clear deadlines and deliverables in agreements
 – Continuous engagement with partners for early identification and resolution of issues
 – Establishing Target Collaboration Board to push on results
ESS Target Project – Concluding Remarks

• Target Project scope, requirements, budget, and schedule well understood

• Key design decisions finalized and being implemented
 • Large neutron source performance and flexibility gains secured
 • Improved designs for wheel, moderator/reflector plug, beam extraction, shielding, He purification, and active cells

• Aggressive schedule meets 2019 Beam-on-Target commitment with 6 months float
 – Focusing on completion of Preliminary Design phase, interface with Target Building, and In-Kind Partnering

• Addressing key risks associated with In-Kind partnering and regulatory framework for radiation safety