HL-LHC Accelerator Status & Schedule

Oliver Brüning
For the HL-LHC Project team
The LHC is NOT a Standalone Machine:

- **SPS**: 26 -> 450 GeV
- **PS**: 1.4 -> 26 GeV
- **PSB**: 50 MeV -> 1.4 GeV
- **LINAC2**: 50 MeV
- **LHC**: 450 -> 7000 GeV
- **PS**: 1.4 -> 26 GeV
The LHC is NOT a Standalone Machine:

SPS: 26 -> 450 GeV

PS: 1.4 -> 26 GeV

PSB: 50 MeV -> 1.4 GeV

LINAC2: 50 MeV

LHC: 450 -> 7000 GeV

Dedicated project for the LHC Injector complex Upgrade (LIU)
Performance Projections up to HL-LHC:

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Run I
Run II
Run III

0.75 \(10^{34}\) cm\(^{-2}\)s\(^{-1}\)
50 ns bunch
high pile up \(\sim 40\)
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Performance Projections up to HL-LHC:

- **Run I**
 - 0.75 10^{34} cm$^{-2}$s$^{-1}$
 - 50 ns bunch
 - high pile up \sim40

- **Run II**
 - 1.5 10^{34} cm$^{-2}$s$^{-1}$
 - 25 ns bunch
 - high pile up \sim40

- **Run III**

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Performance Projections up to HL-LHC:

Run I
- \(0.75 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
- 50 ns bunch
- high pile up \(\sim 40\)

Run II
- \(1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
- 25 ns bunch
- high pile up \(\sim 40\)

Run III
- \(1.5 - 2.2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
- 25 ns bunch
- very high pile up \(> 60\)
Performance Projections up to HL-LHC:

- Cryogenic limit &
- Radiation Damage of triplet magnets

Run I
0.75 \(10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
50 ns bunch
high pile up \(\sim 40\)

Run II
1.5 \(10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
25 ns bunch
high pile up \(\sim 40\)

Run III
1.5 -2.2 \(10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
25 ns bunch
very high pile up > 60

Technical limits (machine and experiments) like e-cloud UFOs!
Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

enabling at total integrated luminosity of 3000 fb\(^{-1}\)

implying an integrated luminosity of 250 fb\(^{-1}\) per year,

design oper. for \(\mu \leq 140\) (\(\Rightarrow\) peak luminosity of 5 \(10^{34}\) cm\(^{-2}\) s\(^{-1}\))

> Ten times the luminosity reach of first 10 years of LHC operation!!
LHC Limitations and HL-LHC Challenges:

- Technical bottle necks (e.g. cryogenics) ➔ New addit. Equipment
- Insertion magnet lifetime and aperture:
 ➔ New insertion magnets and low-β with increased aperture
- X-ing angle Geometric Reduction Factor: ➔ SC Crab Cavities
 ➔ New technology and a first for a hadron storage ring!
- Performance Optimization: Pileup density ➔ luminosity levelling
 ➔ devise parameters for virtual luminosity >> target luminosity
- Beam power & losses ➔ additional collimators in cold region
- Machine efficiency and availability:
 # R2E ➔ removal of all electronics from tunnel region
 # e-cloud ➔ beam scrubbing (conditioning of surface)
 # UFOs ➔ beam scrubbing (conditioning of surface)
Eliminating Technical Bottlenecks

Cryogenics P4 - P1 - P5

8 x 18 kW @ 4.5 K
1'800 SC magnets
24 km and 20 kW @ 1.9 K
36'000 tons @ 1.9 K
96 tons of He

Cryogenic plant
Eliminating Technical Bottlenecks
Cryogenics P4- P1 –P5

New Plant ≥ 6 kW in P4 (LS2)
New 18 kW Plants in P1 and P5 (LS3)

8 x 18 kW @ 4.5 K
1'800 SC magnets
24 km and 20 kW @ 1.9 K
36'000 tons @ 1.9 K
96 tons of He
HL-LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb⁻¹

- Q2: 27 MGy
- Cold bore insulation: ≈ 35 MGy
- MCBX3: 20 MGy

7+7 TeV proton interactions
IT quadrupoles
MCBX-1
MCBX-2
MQSX
MCTX nested in MCBX-3
MCSEX

peak dose longitudinal profile

Distance from IP [m]

Peak dose [MGy / 300 fb⁻¹]
HL-LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb$^{-1}$

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated luminosity!!!!!!
HL-LHC Challenges: Crossing Angle I

Insertion Layout:

Parasitic bunch encounters:
Operation with ca. 2800 bunches @ 25ns spacing ➔ approximately 30 unwanted collision per Interaction Region (IR).

➔ Operation requires crossing angle

non-linear fields from long-range beam-beam interaction:
efficient operation requires large beam separation at unwanted collision points

➔ Separation of 10 - 12 σ ➔ large triplet apertures for HL-LHC upgrade!!
HL-LHC Upgrade Ingredients: Triplet Magnets
HL-LHC Upgrade Ingredients: Triplet Magnets

- Nominal LHC triplet: 210 T/m, 70 mm coil aperture
 - ca. 8 T @ coil
 - 1.8 K cooling with superfluid He (thermal conductivity)
 - current density of 2.75 kA / mm²
- At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm²)!!!
HL-LHC Magnets:

- LHC triplet:
 - 210 T/m, 70 mm bore aperture
 - \Rightarrow 8 T @ coil (limit of NbTi tech.)
HL-LHC Magnets:

- LHC triplet:
 210 T/m, 70 mm bore aperture
 \(\Rightarrow 8 \, \text{T} @ \text{coil} \) (limit of NbTi tech.)

- HL-LHC triplet:
 140 T/m, 150 mm coil aperture
 (shielding, \(\beta^* \) and crossing angle)
 \(\Rightarrow \text{ca. 12 T} @ \text{coil} \) \(\Rightarrow 30\% \) longer
HL-LHC Magnets:

- **LHC triplet:**
 210 T/m, 70 mm bore aperture
 → 8 T @ coil (limit of NbTi tech.)

- **HL-LHC triplet:**
 140 T/m, 150 mm coil aperture
 (shielding, β^* and crossing angle)
 → ca. 12 T @ coil → 30% longer
HL-LHC Magnets:

- LHC triplet:
 210 T/m, 70 mm bore aperture
 → 8 T @ coil (limit of NbTi tech.)
- **HL-LHC triplet:**
 140 T/m, 150 mm coil aperture
 (shielding, β^* and crossing angle)
 → ca. 12 T @ coil → 30% longer
 - Requires Nb$_3$Sn technology
 → brittle material type (fragile)
 → ca. 25 year development for this new magnet technology!
- US-LARP – CERN collaboration
New Interaction Region lay out

Longer Quads; Shorter D1 (thanks to SC)

Thick boxes are magnetic lengths -- Thin boxes are cryostats
LHC Challenges: Crossing Angle II

geometric luminosity reduction factor:

large crossing angle:

- reduction of long range beam-beam interactions
- reduction of beam-beam tune spread and resonances
- reduction of the mechanical aperture
- increase of effective beam cross section at IP
- reduction of luminous region
 - reduction of instantaneous luminosity
 - inefficient use of beam current!
HL-LHC Upgrade Ingredients: Crab Cavities

Geometric Luminosity Reduction Factor:

\[F = \frac{1}{\sqrt{1 + \Theta^2}}, \quad \Theta = \frac{\theta_c \sigma_z}{2 \sigma_x} \]

\[F(\beta^*) \]

- effective cross section

IPAC 2015, Mai 2015, Richmond, USA
HL-LHC Upgrade Ingredients: Crab Cavities

Geometric Luminosity Reduction Factor:

\[F = \frac{1}{\sqrt{1 + \Theta^2}}; \quad \Theta \equiv \frac{\theta_c \sigma_z}{2\sigma_x} \]

\[F(\beta^*) \]

Effective cross section

HL-LHC LHC
Crab Cavities:

- Reduces the effect of geometrical reduction factor
- Independent for each IP
- Noise from cavities to beam?!?
- Impedance and HOM?
- Challenging space constraints:
 - requires novel compact cavity design

\[
F = \frac{1}{\sqrt{1 + \Theta^2}}, \quad \Theta = \frac{\theta_c \sigma_z}{2 \sigma_x}
\]
Latest cavity designs toward accelerator

3 Advanced Design Studies with Different Coupler concepts

RF Dipole: Waveguide or waveguide-coax couplers

Double ¼-wave: Coaxial couplers with hook-type antenna

4-rod: Coaxial couplers with different antenna types
Latest cavity designs toward accelerator

3 Advanced Design Studies with Different Coupler concepts

RF Dipole: Waveguide or waveguide-coax couplers

Double ¼-wave:

Concentrate on two designs in order to be ready for test installation in SPS in 2016/2017 TS

Review in 2013
Latest cavity designs toward accelerator

3 Advanced Design Studies with Different Coupler concepts

Review in 2013

Double $\frac{1}{4}$-wave:

Concentrate on two designs in order to be ready for test installation in SPS in 2016/2017 TS

Present baseline: 4 cavity/cryomod TEST in SPS under preparation for 2017

RF Dipole: Waveguide or waveguide-coax couplers
And excellent first results: RF Dipole

Recent results from Measurements @ CERN

Initial goal was 3.5 MV however $\Delta V > 5$-6 MV would ease integration
And excellent first results: DQW

Recent results from Measurements @ CERN

CERN SM18 Cold test @2K
Cavity: Crab_DQW

DQWR prototype (17-Jan-2013) [BNL]
HL-LHC Challenge: Event Pileup Density

Vertex Reconstruction for $0.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} @ 50\text{ns}$

$Z \rightarrow \mu\mu$ event from 2012 data with 25 reconstructed vertices
HL-LHC Challenge: Event Pileup Density

Vertex Reconstruction

Extrapolating to $5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ implies:

$\mu = 280; \mu_{\text{peak}} > 500$ @ 50ns bunch spacing

$\mu = 140; \mu_{\text{peak}} = 280$ @ 25ns bunch spacing
Vertex Reconstruction

HL-LHC Performance Optimization:
Use leveling techniques for keeping average Pileup around 140 events per bunch crossing.

\rightarrow level luminosity at 5×10^{34} cm$^{-2}$ s$^{-1}$

$\rightarrow <\mu> = 140; \mu_{\text{peak}} = 280$ @ 25ns bunch spacing.
LHC Challenges: Beam Power

Unprecedented beam power:

- potential equipment damage in case of failures during operation
- In case of failure the beam must never reach sensitive equipment!
LHC Challenges: Beam Power

Unprecedented beam power:

- potential equipment damage in case of failures during operation

- In case of failure the beam must never reach sensitive equipment!

Stored Beam power: HL-LHC > 500 MJ / beam
LHC Challenges: Beam Power

Unprecedented beam power:

Worry about beam losses:

Failure Scenarios ➔ Local beam Impact

⇒ Equipment damage
⇒ Machine Protection

Lifetime & Loss Spikes ➔ Distributed losses

⇒ Magnet Quench
⇒ R2E and SEU
⇒ Machine efficiency
LHC Challenges: Quench Protection

Magnet Quench:

➔ beam abort ➔ several hours of recovery

HL LHC beam intensity: \[I > 1 \text{ A} \Rightarrow > 7 \times 10^{14} \text{ p /beam} \]

Quench level: \[N_{\text{lost}} < 7 \times 10^8 \text{ m}^{-1} \Rightarrow < 10^{-6} N_{\text{beam}}! \]

(compared to 20% to 30% in other superconducting rings)

➔ requires collimation during all operation stages!

➔ requires good optic and orbit control!

➔ HL-LHC luminosity implies higher leakage from IP & requires additional collimators

➔ Which we have demonstrated during RunI
DS collimators – 11 T Dipole (LS2 -2018)
Prototyping of the by-pass crystostat (QTC) for the installation of a warm collimator in the cold dispersion suppressors.

Magnet: prototypes reached 11 T field in March 2013!
Nominal LHC Operation Cycle:

- Beam dump
- Ramp down/precycle
- Injection
- Ramp
- Squeeze
- Collide
- Stable beams

Nominal LHC Operation Cycle:

- Ramp down: 35 mins
- Injection: ~30 mins
- Ramp: 12 mins
- Squeeze: 15 mins
- Collide: 5 mins
- Stable beams: 0 – 30 hours

Operational Turn around time of 2 - 3 hours ➔ Efficiency = time in physics / scheduled time

M. Lamont @ Evian LHC Operation workshop

Efficiency = time in physics / scheduled time
Operation experience in 2011 and 2012:

- Only ~30% of the fills are dumped by operation.

- corresponds to ca. 40% machine efficiency (time actually spend in physics divided by scheduled time for physics operation)

- 3000 fb-1 for HL-LHC will require significantly better machine efficiency!!! and average fill length above 6 hours (ca. 10 hours)!

J. Wenninger @ Evian LHC Operation workshop
HL-LHC Challenge: Machine Efficiency

Integrated Luminosity

- Operation experience in 2011 and 2012:
 - Only ~30% of the fills are dumped by operation.

- corresponds to ca. 40% machine efficiency (time actually spend in physics divided by scheduled time for physics operation).

- 3000 fb-1 for HL-LHC will require significantly better machine efficiency and average fill length above 6 hours (ca. 10 hours).

Consolidation of infrastructure!
But also new paradigm: remove as much as possible from the tunnel.
R2E SEU Failure Analysis - Actions

- **2008-2011**
 - Analyze and mitigate all safety relevant cases and limit global impact

- **2011-2012**
 - Focus on equipment with long downtimes; provide shielding

- **LS1 (2013/2014)**
 - Relocation of power converters

- **LS1 – LS2:**
 - Equipment Upgrades

- **LS3 -> HL-LHC**
 - Remove all sensitive equipment from underground installations
Availability and Machine Efficiency:
SC links ➔ removal of powering from tunnel

2×150 kA
Availability and Machine Efficiency:

- SC links
- Removal of powering from tunnel

\[L = 20 \text{ m} \]
\[(25 \times 2) \text{ 1 kA @ 25 K} \]

Feb 2014:
World record for HTS
Availability and Machine Efficiency:
SC links ➔ removal of powering from tunnel
Availability and Machine Efficiency:
SC links ➔ removal of powering from tunnel

1 pair 700 m 50 kA – LS2
4 pairs 300 m 150 kA (MS) – LS3
4 pairs 300 m 150 kA (IR) – LS3
tens of 6-18 kA CLs pairs in HTS
The critical zones around IP1 and IP5

1. New triplet Nb$_3$Sn required due to:
 - Radiation damage
 - Need for more aperture
 Changing the triplet region is not enough for reaching the HL-LHC goal!

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector

3. For collimation we also need to change the DS in the continuous cryostat: 11T Nb$_3$Sn dipole

- More than 1.2 km of LHC!!
- Plus technical infrastructure (e.g. Cryo and Powering)!!
Implementation plan:

- TDR: OCT 2015; TDR_v2: 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 for IT, CC & other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-25
- Though but – based on LHC experience – feasible
Recent & Upcoming Project Milestones:

- May 2013: HL-LHC Collimation Review
- October 2013: RLIUP Workshop
- October 2013: 1st ECFA HL-LHC & Experiments Workshop
- May 2014: Crab Cavity Review
- November 2014: Super-conducting Cable review
- December 2014: MQXF Magnet review
- November 2014: 2nd ECFA HL-LHC & Experiments Workshop
- January 2015: Publication of the Preliminary Design Report
- March 2015: LIU and HL-LHC Cost & Schedule Review
- December 2015: End of EU funded HighLumi Design Study
Executive Summary

- The review committee is very impressed with the enormous amount of work that was presented.
- A very competent, engaged and effective management team is in place to manage both projects.
- The Project Management tools used at CERN are state of the art, well utilized and well understood by the management team.
- The presented project organizational structures are suitable to execute the projects. They matrix in-house as well as external resources very effectively into the organizations and they report directly to the Director of Accelerator and Technology.
- The QA and QC programs are well established, flexible and effective. They allow to manage foreign contributions, In-Kind participation and international collaborations effectively.
- The risk management program is somewhat new and should be fully integrated.
- The LIU and the HL-LHC project are well advanced in planning and execution for the stage they are in.

Congratulations!
Reserve Transparencies
Project approval milestones:

• June 2010: launch of High Luminosity LHC
• November 2010: HiLumi DS application to FP7
• November 2011: start FP7-HiLumi DS
• May 2013: approval of HL-LHC as 1st priority of EU-HEP strategy by CERN Council in Brussels
• May 2014: US P5 ranks HL-LHC as priority for DOE (Particle Physics Project Prioritization Panel)
• June 2014: CERN Council approves the financial plan of HL-LHC till 2025 (with an overall 10% budget cut)
LHC Upgrade Goals: Performance optimization

Luminosity recipe (round beams):

\[L = \frac{n_b \cdot N_1 \cdot N_2 \cdot \gamma \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot F(\phi, \beta^*, \varepsilon, \sigma_s) \]

1) maximize bunch intensities
2) minimize the beam emittance
3) minimize beam size (constant beam power);
4) maximize number of bunches (beam power);
5) compensate for ‘F’;
6) Improve machine ‘Efficiency’

Injector complex
Upgrade LIU
triplet aperture
25ns
Crab Cavities
minimize number of unscheduled beam aborts
FNAL: MBHSP01 – 1-in-1 Demonstrator (2 m)

40-strand cable fabricated using FNAL cabling machine

Coil fabrication

Collared coil assembly

Cold mass assembly

MBHSP02 passed 11 T field during training at 1.9 K with $I = 12080\,\text{A}$ on 5th March 2013!
HL-LHC Baseline Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nominal LHC (design report)</th>
<th>HL-LHC 25ns (standard)</th>
<th>HL-LHC 25 ns (BCMS)</th>
<th>HL-LHC 50ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy in collision [TeV]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_b</td>
<td>1.15E+11</td>
<td>2.2E+11</td>
<td>2.2E11</td>
<td>3.5E+11</td>
</tr>
<tr>
<td>n_b</td>
<td>2808</td>
<td>2748(^1)</td>
<td>2604</td>
<td>1404</td>
</tr>
<tr>
<td>Number of collisions at IP1 and IP5</td>
<td>2808</td>
<td>2736</td>
<td>2592</td>
<td>1404</td>
</tr>
<tr>
<td>N_{tot}</td>
<td>3.2E+14</td>
<td>6.0E+14</td>
<td>5.7E+14</td>
<td>4.9E+14</td>
</tr>
<tr>
<td>Beam current [A]</td>
<td>0.58</td>
<td>1.09</td>
<td>1.03</td>
<td>0.89</td>
</tr>
<tr>
<td>x-ing angle [μrad]</td>
<td>285</td>
<td>12.5</td>
<td>12.5</td>
<td>11.4</td>
</tr>
<tr>
<td>beam separation [σ]</td>
<td>9.4</td>
<td>12.5</td>
<td>12.5</td>
<td>11.4</td>
</tr>
<tr>
<td>β^* [m]</td>
<td>0.55</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>ϵ_n [\mu m]</td>
<td>3.75</td>
<td>2.50</td>
<td>2.50</td>
<td>3</td>
</tr>
<tr>
<td>ϵ_L [eVs]</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r.m.s. energy spread</td>
<td>1.13E-04</td>
<td>1.13E-04</td>
<td>1.13E-04</td>
<td>1.13E-04</td>
</tr>
<tr>
<td>r.m.s. bunch length [m]</td>
<td>7.55E-02</td>
<td>7.55E-02</td>
<td>7.55E-02</td>
<td>7.55E-02</td>
</tr>
<tr>
<td>IBS horizontal [h]</td>
<td>80 -> 106</td>
<td>18.5</td>
<td>18.5</td>
<td>17.2</td>
</tr>
<tr>
<td>IBS longitudinal [h]</td>
<td>61 -> 60</td>
<td>20.4</td>
<td>20.4</td>
<td>16.1</td>
</tr>
<tr>
<td>Piwinski angle</td>
<td>0.65</td>
<td>3.14</td>
<td>3.14</td>
<td>2.87</td>
</tr>
<tr>
<td>Geometric loss factor R0 without crab-cavity</td>
<td>0.836</td>
<td>0.305</td>
<td>0.305</td>
<td>0.331</td>
</tr>
<tr>
<td>Geometric loss factor R1 with crab-cavity</td>
<td>(0.981)</td>
<td>0.829</td>
<td>0.829</td>
<td>0.838</td>
</tr>
<tr>
<td>peak-beam / IP without Crab Cavity</td>
<td>3.1E-03</td>
<td>3.3E-03</td>
<td>3.3E-03</td>
<td>4.7E-03</td>
</tr>
<tr>
<td>beam-beam / IP with Crab cavity</td>
<td>3.8E-03</td>
<td>1.1E-02</td>
<td>1.1E-02</td>
<td>1.4E-02</td>
</tr>
<tr>
<td>Peak Luminosity without crab-cavity [cm(^{-2})s(^{-1})]</td>
<td>1.00E+34</td>
<td>7.18E+34</td>
<td>6.80E+34</td>
<td>8.44E+34</td>
</tr>
<tr>
<td>Virtual Luminosity with crab-cavity: $L_{peak}*R1/R0$ [cm(^{-2})s(^{-1})]</td>
<td>(1.18E+34)</td>
<td>19.54E+34</td>
<td>18.52E+34</td>
<td>21.38E+34</td>
</tr>
<tr>
<td>Events / crossing without levelling w/o crab-cavity</td>
<td>27</td>
<td>198</td>
<td>198</td>
<td>454</td>
</tr>
<tr>
<td>Levelled Luminosity [cm(^{-2})s(^{-1})]</td>
<td>-</td>
<td>5.00E+34</td>
<td>5.00E34</td>
<td>2.50E+34</td>
</tr>
<tr>
<td>Events / crossing (with levelling and crab-cavities for HL-LHC)</td>
<td>27</td>
<td>138</td>
<td>146</td>
<td>135</td>
</tr>
<tr>
<td>Peak line density of pile up event [evt/mm] (max over stable beam)</td>
<td>0.21</td>
<td>1.25</td>
<td>1.31</td>
<td>1.20</td>
</tr>
<tr>
<td>Levelling time [h] (assuming no emittance growth)</td>
<td>-</td>
<td>8.3</td>
<td>7.6</td>
<td>18.0</td>
</tr>
</tbody>
</table>

\(^1\)ATS required

IPAC 2015, Mai 2015, Richmond, USA
LHC Upgrade Goals: Performance optimization

• Levelling:

Luminosity limitation(s):
• Even Pileup in detectors
• Debris leaving the experiments and impacting in the machine (magnet quench protection)
• Triplet Heat Load
The **Achromatic Telescopic Squeezing (ATS) scheme**

Small β^* is limited by aperture but not only: **optics matching & flexibility** (round and flat optics), chromatic effects (not only Q'), spurious dispersion from X-angle, ..

A novel optics scheme was developed to reach un-precedent β^* w/o chromatic limit based on a kind of generalized squeeze involving 50% of the ring

Beam sizes [mm] @ 7 TeV from IR8 to IR2 for typical ATS

“pre-squeezed” optics (left) and “telescopic” collision optics (right)

(S. Fartoukh)
The **Achromatic Telescopic Squeezing (ATS) scheme**

Small β^* is limited by aperture but not only: optics matching & flexibility (round and flat optics), chromatic effects (not only Q'), spurious dispersion from X-angle,..

A novel optics scheme was developed to reach un-precedent β^* w/o chromatic limit based on a kind of generalized squeeze involving 50% of the ring

$\beta^* = 40$ cm

$\beta^* = 10$ cm

→ Proof of principle demonstrated in the LHC down to a β^* of 10-15 cm at IP1 and IP5

Beam sizes [mm] @ 7 TeV from IR8 to IR2 for typical ATS “pre-squeezed” optics (left) and “telescopic” collision optics (right)

The new IR is sort of 8 km long!
LHC low-β quads: steps in magnet technology from LHC toward HL-LHC

LHC (USA & JP, 5-6 m)
Ø70 mm, B_{peak} \sim 8 T
1992-2005

LARP TQS & LQ (4m)
Ø90 mm, B_{peak} \sim 11 T
2004-2010

New structure based on bladders and keys (LBNL, LARP)

LARP HQ
Ø120 mm, B_{peak} \sim 12 T
2008-2014

LARP & CERN MQXF
Ø150 mm, B_{peak} \sim 12.1 T
2013-2020
The HL-LHC Nb-Ti magnet zoo...

D1 (KEK)

Nested Orbit corrector (CIEMAT)

HO correctors: superferric (INFN)

D2 (INFN)

Q4 (CEA)

D2 corr
SPS beam test: a critical step for CC (profiting of the EYETS 2016-2017)

SPS test is critical: at least one cryomodule before LS2, possibly two, of different cavity type.

A test in LHC P4 is kept as a possibility but it is not in the baseline.

∅ = 90 mm. 2 K
11.6 MV required voltage;
baseline is 4 cavities/beam-side, ⇒ 2.9MV/cavity
Low impedance collimators (LS2 & LS3)

New material: MoGr

Reduce impedance by > 2)
S. Redaelli et al.
Efficiency for $\int L \, dt$

- All our assumptions are based on forecast for the operation cycle:

$$\eta \geq 50\%$$

High reliability and availability are key goals

\[L_{\text{virt}} = 20 \cdot 10^{34}, \quad N_{\text{ppb}} = 2.2 \cdot 10^{11} \]
Controlling halo diffusion rate:
hollow e-lens (synergy with LRBBCW)

Promises of hollow e-lens:
1. Control the halo dynamics without affecting the beam core;
2. Control the time-profile of beam losses (avoid loss spikes);
3. Control the steady halo population (crucial in case of CC fast failures).
Remarks:
- very convincing experimental experience in other machines!
- full potential can be exploited if appropriate halo monitoring is available.
In-kind contribution and Collaboration for HW design and prototypes

Q1-Q3 : R&D, Design, Prototypes and in-kind USA
D1 : R&D, Design, Prototypes and in-kind JP
MCBX : Design and Prototype ES
HO Correctors: Design and Prototypes IT
Q4 : Design and Prototype FR
High Luminosity LHC Participants
High Luminosity LHC Participants
HL-LHC Challenges: Collimation Efficiency

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Absorbers</th>
<th>Dump Kicker</th>
<th>Dump Protection</th>
<th>Tertiary</th>
<th>Triplet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7σ</td>
<td>6.7σ</td>
<td></td>
<td></td>
<td>10σ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1σ</td>
<td></td>
<td>7σ</td>
<td>15σ</td>
<td></td>
</tr>
</tbody>
</table>

Collimator type	N_i	Collimator type	N_i
TCP IR3 | 8σ | TCDQ IR6 | 8σ |
TCSG IR3 | 9.3σ | TCSG IR6 | 7σ |
TCLA IR3 | 10σ | TCLI IR2/IR8 | 6.8σ |
TCP IR7 | 5.7σ | TCT IR2/IR8 | 25σ |
TCSG IR7 | 6.7σ | TCT IR1/IR5 | 15σ |
TCLA IR7 | 10σ | TCL IR1 | 20σ |

2012
‘Tight’ = Iberian Peninsula 2.2mm

2011
‘Interm.’ Norway = 3.1mm

1σ (450GeV) ≈ 1mm
1σ (4TeV) ≈ 0.35mm
1σ (6.5TeV) ≈ 0.25mm
HL-LHC: Maintain and increase physics reach!!!

Necessity of a jump in luminosity (useful luminosity ⇒ data quality)
3 Crab Cavity prototypes:

- RF-Dipole Nb prototype [ODU-SLAC]
- 4-rod in SM18 for RF measurements [Lancaster UK]
- 4-rod prepared for rinsing @ CERN
- DQWR prototype (17-Jan-2013) [BNL]

Concept of RF Power system
Integrated Luminosity 2010-2012

- 2010: 0.04 fb⁻¹
 - 7 TeV CoM
 - Commissioning
- 2011: 6.1 fb⁻¹
 - 7 TeV CoM
 - Exploring the limits
- 2012: 23.3 fb⁻¹
 - 8 TeV CoM
 - Production

⇒ x 60 in 2 years!
LHC: big (27km), cold (1.8K), high energy (7 TeV on 7 TeV)

- Beam dumps
- Collimation
- Injection B2
- 2-in-1 magnet design ➔ p-p, Pb-Pb & p-Pb collisions

- Injection B1
- Collimation
- CMS
- RF
- LHCb
- ATLAS
- CERN Meyrin
- SPS, 7 km
- CERN Tandem
- ALICE
- LHC – 27 km

1720 Power converters
> 9000 magnetic elements
7568 Quench detection systems
1088 Beam position monitors
4000 Beam loss monitors

150 tonnes Helium, ~90 tonnes at 1.9 K
140 MJ stored beam energy in 2012
370 MJ design and > 500 MJ for HL-LHC!
450 MJ magnetic energy per sector at 4 TeV ➔ ≈ 10 GJ total @ 7 TeV
Intervention rate & time: QPS boxes

<table>
<thead>
<tr>
<th>Dump Cause</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam: Losses</td>
<td>58</td>
</tr>
<tr>
<td>Quench Protection</td>
<td>56</td>
</tr>
<tr>
<td>Power Converter</td>
<td>35</td>
</tr>
<tr>
<td>Electrical Supply</td>
<td>26</td>
</tr>
<tr>
<td>RF + Damper</td>
<td>23</td>
</tr>
<tr>
<td>Feedback</td>
<td>19</td>
</tr>
<tr>
<td>BLM</td>
<td>18</td>
</tr>
<tr>
<td>Vacuum</td>
<td>17</td>
</tr>
<tr>
<td>Beam: Losses (UFO)</td>
<td>15</td>
</tr>
<tr>
<td>Cryogenics</td>
<td>14</td>
</tr>
<tr>
<td>Collimation</td>
<td>12</td>
</tr>
<tr>
<td>Controls</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dump Cause</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM</td>
<td>8</td>
</tr>
<tr>
<td>Operations: Error</td>
<td>6</td>
</tr>
<tr>
<td>SIS</td>
<td>4</td>
</tr>
<tr>
<td>LBDS</td>
<td>4</td>
</tr>
<tr>
<td>TOTEM</td>
<td>4</td>
</tr>
<tr>
<td>CMS</td>
<td>3</td>
</tr>
<tr>
<td>BCM</td>
<td>2</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
</tr>
<tr>
<td>Access System</td>
<td>2</td>
</tr>
<tr>
<td>LHCb</td>
<td>2</td>
</tr>
<tr>
<td>ALICE</td>
<td>2</td>
</tr>
<tr>
<td>Beam: Orbit</td>
<td>1</td>
</tr>
</tbody>
</table>
Intervention rate & time: QPS boxes

<table>
<thead>
<tr>
<th>Dump Cause</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam: Losses</td>
<td>58</td>
</tr>
<tr>
<td>Quench Protection</td>
<td>56</td>
</tr>
<tr>
<td>Power Converter</td>
<td>35</td>
</tr>
<tr>
<td>Electrical Supply</td>
<td>26</td>
</tr>
<tr>
<td>RF + Damper</td>
<td>23</td>
</tr>
<tr>
<td>Feedback</td>
<td>19</td>
</tr>
<tr>
<td>BLM</td>
<td>18</td>
</tr>
<tr>
<td>Vacuum</td>
<td>17</td>
</tr>
<tr>
<td>Beam: Losses (UFO)</td>
<td>15</td>
</tr>
<tr>
<td>Cryogenics</td>
<td>14</td>
</tr>
<tr>
<td>Collimation</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dump Cause</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM</td>
<td>8</td>
</tr>
<tr>
<td>Operations: Error</td>
<td>6</td>
</tr>
<tr>
<td>SIS</td>
<td>4</td>
</tr>
<tr>
<td>LBDS</td>
<td>4</td>
</tr>
<tr>
<td>TOTEM</td>
<td>4</td>
</tr>
<tr>
<td>CMS</td>
<td>3</td>
</tr>
<tr>
<td>BCM</td>
<td>2</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
</tr>
<tr>
<td>Access System</td>
<td>2</td>
</tr>
<tr>
<td>LHCb</td>
<td>2</td>
</tr>
<tr>
<td>ALICE</td>
<td>1</td>
</tr>
</tbody>
</table>
Intervention rate & time: QPS boxes

Consolidation of infrastructure!
But also new paradigm: remove as much as possible from the tunnel.