OPTIMIZATION OF THE MOMENTUM BANDWIDTH FOR FINAL FOCUS SYSTEM IN CEPC*

S. Bai#, Y.W. Wang, D. Wang, H.P. Geng, J. Gao, T.J. Bian, M. Xiao, F. Su, IHEP, Beijing, China

Abstract

With the discovery of the higgs boson at around 125 GeV, a circular higgs factory design with high luminosity \(L \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1} \) is becoming more popular in the accelerator world. To achieve such high luminosity, a final focus system in non-local chromaticity correction scheme with very low \(\beta \) functions at the interaction point is designed. The narrow momentum bandwidth is a crucial problem of this kind of design. It is shown that by introducing additional sextupoles the momentum acceptance of the CEPC final focus system can be increased by about a factor of four.

INTRODUCTION

With the discovery of a Higgs boson at about 125 GeV, the world high-energy physics community is investigating the feasibility of a Higgs Factory, a complement to the LHC for studying the Higgs [1]. There are two ideas now in the world to design a future higgs factory, a linear 125 × 125 GeV e⁻e⁺ collider and a circular 125 GeV e⁺e⁻ collider. From the accelerator point of view, the circular 125 GeV e⁺e⁻ collider, due to its low budget and mature technology, is becoming the preferred choice to the accelerator group in China. In order to achieve high luminosity \(L \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1} \), the beam dimensions at the interaction point have to be extremely small, typically \(\sigma_x \sigma_y \approx 10^{11} \text{ cm}^2 \). This requires, in addition to small beam emittances, a beam-optical system which produces very low \(\beta \) functions at the interaction point. Unavoidably, the natural chromaticity of such a system becomes very large and its compensation difficult. On the other hand, high luminosity and overall efficiency of the collider calls for a high bunch intensity which in turn increases the momentum spread within a bunch due to the longitudinal wakefields in the linac. It is therefore clear that a large momentum acceptance of the final focus system (usually defined as the range of \(\delta p/p \) for which the spot size at the interaction point varies by less than a factor of two) is highly desirable.

In this paper, the limitation of the momentum bandwidth is first analyzed. An improved chromaticity correction section is achieved by adding Brinkmann sextupoles. The momentum bandwidth of the final focus system is then increased by a factor of four. The performance of the optimized system is investigated with particle tracking simulations.

*I Work supported by the National Natural Science Foundation of China (NSFC, Project 11175192) and in part by the CAS Center for Excellence in Particle Physics (CCEPP).
#baisha@ihep.ac.cn

-1 TRANSFORMATION MATRIX BREAKDOWN

The CEPC final focus system is designed that the chromatic aberrations caused by the final focus doublet are compensated with a two-family non-interleaved sextupole distribution (Fig. 1). Each family consists of two identical sextupoles connected by a \(-I\) transformer. The non-interleaved scheme of the sextupoles almost cancels the pure geometric aberrations from the sextupoles except for the aberrations produced by the finite thickness of the sextupoles.

Fig. 1: Sextupole families.

The increase of the vertical beam size due to the thickness \(l_s \) of the sextupole is written as [2]:

\[
\Delta \sigma_y \approx \frac{\Delta \sigma_y^2}{\sigma_y^2} = \frac{5}{12} \frac{k^4 \beta_s^4 e_{s}^2 l_s^2}{\gamma^2}
\]

(1)

Where \(k^* \), \(l_s^* \) and \(\beta_s^* \) are the strength, thickness of the SD sextupole and the vertical \(\beta \) function at the sextupole.

HIGH ORDER ANALYSIS IN CEPC FFS

Due to the breakdown of the \(-I\), the non-linear kicks for off-momentum particles are no longer cancelled. The aberrations which caused by this will degrade the momentum acceptance for off-momentum particles. We analyzed the high-order aberrations of CEPC final focus system with different energy spread using a code called MAPCLASS [3] which is developed in CERN.

Fig. 2: Order analysis of horizontal in CEPC FFS.

5: Beam Dynamics and EM Fields
D02 - Nonlinear Dynamics - Resonances, Tracking, Higher Order

MOPWA062

269
As can be seen in Fig. 2 and Fig. 3, the third order aberrations may contribute a lot to the final beam size at IP, but the 4th order may be the dominant.

By optimizing the locations and strengths of the sextupoles in MAPCLASS, which allows following an ensemble of trajectories through the beamline, to determine the spotsize at the interaction point, a better momentum bandwidth is achieved in the CEPC FFS. The simulations are done for a Gaussian initial distribution of the transverse coordinates and a Gaussian distribution of $\delta p/p$ which is cut at 3σ. 10000 particles are tracked and at the interaction point the rms beam size is got to the transverse distributions. The results of the β function bandwidths optimization is shown in Fig. 6, and the beam size bandwidth in Fig. 7.
The narrow bandwidth is a common disadvantage of the non-local type Final focus system with non-interleaved sextupoles chromatic correction scheme. This is caused by the –I transformation matrix breakdown coming from the finite thickness sextupoles, which is demonstrated firstly in this paper. We analyzed the aberrations of CEPC FFS in different energy spread cases, and found that the dominant one is the fourth order. It has been pointed out by Brinkmann that the momentum bandwidth of the final focus system can be optimized by introducing additional sextupoles. We validate this method and enlarged the momentum bandwidth of CEPC FFS by a factor of four.

ACKNOWLEDGMENT
We acknowledge the support of the National Natural Science Foundation of China (NSFC, Project 11175192). This work is supported in part by the CAS Center for Excellence in Particle Physics (CCEPP).

REFERENCES