Design and Performance of the Optical Fiber Length Stabilization System for SACLA

H. Maesaka¹, T. Ohshima¹, S. Matsubara², Y. Otake¹
1: RIKEN SPring-8 Center, XFEL R&D Division
2: JASRI XFEL Utilization Division
June 18th, 2014
IPAC2014, Dresden, Germany
Introduction

- X-ray Free Electron Laser Facility “SACLAL”
 - Low-emittance thermionic electron gun ($\varepsilon_n \sim 1 \mu m$ rad)
 - 238 MHz, 476 MHz, L-band (1428 MHz) and S-band (2856 MHz) accelerators for acceleration and bunch compression
 - High-gradient C-band Main Linac (5712 MHz, > 35 MV/m)
 - Short-period in-vacuum undulator ($\lambda_u = 18$ mm)
- Accelerator components must be precisely synchronized
 - Bunch length is compressed to be 30 fs.
- Pump-and-probe experiment also needs precise synchronization with accelerator
- Required timing stability: 50 fs
 - throughout the 700m-long facility
- Optical timing and RF distribution system
 - Wavelength region of 1550 nm
 - Phase-stabilized optical fiber (5 ps/km/K) is used
 - Temperature of optical fiber cables is regulated within 0.4 K.
 - Electronics are enclosed in water-cooled 19-inch racks (0.4 K pk-pk)
XFEL Stability

- Present performance of SACLA
 - 24-hour trend graph during a user operation
 - With various feedbacks and manual tuning
- XFEL Intensity: ~500 μJ/pulse
- Intensity fluctuation: ~10% (std. dev.)
- Pointing Stability: ~10 μm (std. dev.)
• Stability data was taken without any beam feedbacks or manual tuning in order to investigate perturbation sources
 – In the early stage of the XFEL operation
• XFEL intensity was not stable
• Timing drift more than 500 fs was observed.
 – One of the reasons could be timing drift due to optical fiber length variation.
• Regulation of the optical fiber length is demanded.
System Overview

Optical Fiber Length Stabilization System

- Frequency Stabilized Laser
- EDFA
- Interferometer
- Piezo-electric Fiber stretcher
- Fiber Length Controller
- O/E
- 5712 MHz Phase Detector
- Mirror
- WDM Divider
- Optical RF Receiver
- EDFA
- 238 MHz

• **Optical Timing and RF Distribution System**
 - Master Oscillator generates low-noise RF signals
 - E/O and O/E Converters for each RF frequency
 - Wavelength-division multiplexing (WDM) technology for multiple signal transmission

• **Optical Fiber Length Stabilization System**
 - Frequency-stabilized laser for a length standard
 - Interferometer detects the optical length variation and fed back to piezo-electric fiber stretcher
 - 5712 MHz RF signal is also transmitted for the phase reference.

• **Optical fibers for these systems are separated**
 - Flexible design for the optical fiber length stabilization system
 - Failure resistant
 - Length variation of optical components (EDFA etc.) can be regulated.
Two length standards and two feedback control loops
- Fine Loop: Frequency-stabilized laser (1549 nm, ~193 THz, 5 fs)
 - For precise control
- Coarse Loop: Optical millimeter-wave signal (91.4 GHz, 11 ps)
 - This loop can restore the absolute length after the power off of the system.
 - For redundancy and for cross-check of the accuracy

Interferometer
- Polarization beam splitter (PBS) and Faraday rotating mirror (FRM) to eliminate scattered light.
- Reference light is frequency-shifted by a 238 MHz signal with an acousto-optic modulator (AOM).
- Each optical signal is separated by a band-pass filter and detected with a photo-diode (PD).
- 238 MHz beat signal is obtained from the PD as an interferometry signal.
- 238 MHz phase is detected by a phase-frequency discriminator (PFD).
Frequency-Stabilized Laser

- Length standard for the fine loop
- Optical frequency is locked to an absorption line of hydrogen cyanide.
 - Wavelength: 1548.955 nm (193.545 THz)
 - P9 absorption line of H_{13}C_{14}N
- Frequency stability: 1×10^{-9}
 - Corresponding to 1 μm accuracy for 1km-long distance measurement.
Light Source for Coarse Loop

- External cavity laser diode (ECLD)
- LiNbO$_3$ modulator (LN-MOD)
 - Driven by a 45.7 GHz signal ($f_m = 5712$ MHz x 8)
 - LN-MOD produces two sidebands (f_+ and f_-)
- Band-reject Filter
 - Eliminates the input light (f_{in})
- Two sidebands, f_+ and f_-, are utilized for the length measurement.
 - $f_+ - f_- = 2f_m = 91.4$ GHz
- Stability
 - Frequency stability of 5712 MHz: $< 1 \times 10^{-9}$
 - This light source is carefully designed to obtain almost same frequency stability as 5712 MHz.
 - Same level as the frequency-stabilized laser for the fine loop
Corner frequency: 1 kHz

Mechanical resonance of the fiber stretcher: 15 kHz

Phase margin: ~70 deg.
Closed Loop Response (Fine)

Gain [dB] vs Frequency [Hz]
- Simulation
- Measurement

Phase [deg] vs Frequency [Hz]
- Simulation
- Measurement
Present Status

- 8 channels of the optical fiber length stabilization system are installed into SACLA.
 - Under engineering run
 - 12 channels in total will be utilized for user-time operation from October.
- Data from a 400m-long optical fiber are shown for example.
Short-term Data

• To estimate length measurement resolution
• Data for 1 hour stable period are plotted
 – Fiber length (~400 m) was regulated by the fine loop

![Graph showing measurement resolution and data stability](image_url)
Only the fine loop was activated. Optical Fiber Length was regulated within 2 fs pk-pk for two weeks. Coarse loop was not activated. (just measured the length variation)

This data shows 50 fs pk-pk variation.

Length data from fine and coarse loops were consistent within 50 fs. We can conclude that the control accuracy is 50 fs.

~ 1 ps drift of the fiber length was compensated with the fiber stretcher.
Length Regulation of RF Distribution Fiber

- Optical fiber length of the optical RF distribution system is regulated by a fiber stretcher at the receiver.
 - According to the detected phase of 5712 MHz

![Graph showing measurement and control over time]

- Measurement (RF)
- Fiber Stretcher (RF)

Graph Details:
- **Measurement / Control [fs]**
- **0:00 6:00 12:00 18:00 0:00 6:00 12:00 18:00 0:00**
- **Fiber stretcher control**
- **5.7GHz Phase det.**

Diagram:
- Optical Fiber Length Stabilization System
- Frequency Stabilized Laser
- EDFA
- Interferometer
- Piezo-electric Fiber Stretcher
- Optical RF Transmitter
- WDM Combiner
- Optical RF Receiver
- 5712MHz Phase Detector
- Piezo-electric Fiber Stretcher
- Optical Fiber Length Stabilization System
- 238MHz
- Master Oscillator

June 18, 2014
Summary

- **An optical fiber length stabilization system** for the timing and RF signal distribution system was developed.
 - For the x-ray free-electron laser facility, SACLA
 - To synchronize accelerator components with a master clock within **50 fs**

- **Setup**
 - Additional optical fiber is prepared for the optical fiber length stabilization system.
 - Frequency-stabilized laser (1549 nm, fine loop) and **91.4 GHz optical signal (coarse loop)** for length standards
 - Optical interferometer to measure the optical length variation
 - Optical fiber length drift is compensated by a piezo-electric fiber stretcher.
 - Optical 5712 MHz is also transmitted for the phase reference of the timing and RF signal distribution system.

- **Performance**
 - Measurement resolution: **0.13 fs rms** (fine loop) and **2.8 fs rms** (coarse loop)
 - Control accuracy: **50 fs pk-pk**
 - Estimated from the length difference between the fine and coarse loops.
 - Optical fiber length for the timing and RF distribution system was also regulated properly.

- **Required performance for the optical fiber length stabilization system was obtained.**
Acknowledgments

- Mr. Mukade, Mr. Ikeda, Mr. Miyamura, and their colleagues
 - Mitsubishi Electric Tokki Systems Corporation
 - For great efforts to construct the system
- Prof. Musha
 - The University of Electro-Communications
 - For helpful suggestions for the design
- Dr. Hirano, Dr. Ando, Mr. Akiyama and Mr. Kameyama
 - Mitsubishi Electric Corporation
 - For helpful suggestions for the design
- Dr. Kouroggi and Dr. Imai
 - OptoComb, Inc.
 - For helpful suggestions for the design
- Dr. Morimoto
 - in SPring-8 Service Co., Ltd.
 - For effective cooperation of the software development of the feedback control process
Backup
Frequency-Stabilized Laser Data

Frequency Stability

Ambient Temperature

Output Power

1 hour

1x10^-9

Frequency Difference [MHz]
Phase Noise of 45.7 GHz Signal

• Almost no additive noise from frequency multiplier
• Integral of the phase noise
 – RMS jitter: 25 fs (10 Hz – 10 MHz)
Fiber Stretcher

- Optical fiber is coiled around a cylindrical piezo-electric actuator
- Dynamic range 3 mm peak-to-peak
 - Bias voltage: 0 V – 300 V
- Frequency response
 - Sufficiently flat up to 3 kHz
 - Mechanical resonance at 15 kHz.

Mechanical resonance: 15 kHz
Other Loop Filters

• Coarse Loop
 – PI control
 – Corner frequency: ~0.01 Hz

• Fiber stretcher for the RF distribution system
 – PI control
 – Corner frequency: ~0.1 Hz

• Fine loop uses a wide band loop filter (1 kHz).
 – Fine loop is sensitive to small amplitude but high frequency vibration.
 – Phase detection range is only 1.5 μm
 – For a stable control under high-frequency perturbation
• Polarization Mode Dispersion for a usual optical fiber
 – $< 1 \text{ ps/√km}$

• If the length of a 1km-long optical fiber varies 1mm (1×10^{-6}), the optical length for different polarization varies only 1 as ($=1 \text{ ps} \times 10^{-6}$).