Nonlinear Optics for Suppression of Halo Formation in Space Charge Dominated Beams

Yuri Batygin¹, Alexander Scheinker¹, Sergey Kurennoy¹, Chao Li²

¹Los Alamos National Laboratory, NM 87545, USA
²The Institute of Modern Physics, Lanzhou, 730000, China

IPAC 14

17 June 2014
Beam halo is a small fraction of particles (1% – 10%) which lies outside of the beam core and results in radio-activation and degradation of accelerator components.

Modern accelerator projects using high-intensity beams require keeping the beam losses at the level 1 Watt / m or less to avoid activation of the accelerator.

Sources of Halo Formation in Linacs

1. Mismatch of the beam with accelerator structure
2. Transverse-longitudinal coupling in RF field
3. Misalignments of accelerator channel components
4. Aberrations and nonlinearities of focusing elements
5. Beam energy tails from un-captured particles
6. Particle scattering on residual gas, intra-beam stripping
7. Non-linear space-charge forces of the beam
Injection of a continuous non-uniform beam in a focusing channel with linear field results in

(a) uniformity of beam core
(b) beam emittance growth
(c) halo formation

Example:
Beam energy 50 keV
Beam current 20 mA
Beam emittance $0.05 \pi \text{ cm mrad}$
FODO period 15 cm
Lens length 5 cm
Quadrupole field gradient 0.0428 T/cm
Tune depression $\sigma/\sigma_0 = 0.1$

(Numbers indicate focusing period)
Self-Consistent Beam Equilibrium in Focusing Channel

Self-consistent problem:

Vlasov’s Equation

\[\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial P} \frac{dP}{dt} = 0 \]

Poisson’s Equation

\[\Delta U_b = -\frac{\rho}{\varepsilon_0} \]

Example: Beam with Gaussian distribution function

\[f = f_0 \exp\left(-2 \frac{x^2 + y^2}{R^2} - 2 \frac{p_x^2 + p_y^2}{p_\gamma^2}\right) \]

Total field \(E_{tot} = -\frac{mc^2}{q} \frac{1}{\gamma} \frac{\varepsilon^2}{R^4} r \)

Space-charge field

\[E_b = -\frac{\partial U_b}{\partial r} = \frac{I}{2\pi \varepsilon_0 \beta c} \frac{1}{r} \left[1 - \exp\left(-2 \frac{r^2}{R^2}\right) \right] \]

Required focusing field

\[E_{\text{ext}} = -\frac{mc^2}{q R \gamma} \left[\frac{\varepsilon^2 r}{R^3} + 2 \frac{I}{I_c \beta \gamma} \frac{R}{r} \left(1 - \exp\left(-2 \frac{r^2}{R^2}\right) \right) \right] \]
Quadrupole-Duodecapole Focusing Structure

Proposed four vane quadrupole structure with a duodecapole field component (EPAC96, p.1236)

Effective (time-independent) potential:

\[
U_{\text{eff}}(\vec{r}) = \frac{q}{4m\gamma} \frac{E^2(\vec{r})}{\omega^2}
\]

Potential of the uniform four vanes structure:

\[
U(r, \theta, t) = \left(\frac{G_2}{2} r^2 \cos 2\theta + \frac{G_6}{6} r^6 \cos 6\theta \right) \sin \omega t
\]

Lines of equal values of the function

\[
C = \frac{r^2}{2} + \zeta r^6 \cos 4\theta + \frac{\zeta^2}{2} r^{10}
\]

for \(\zeta = -0.03 \): (a) \(C = 0.05 \), (b) \(C = 0.25 \), (c) \(C = 0.5 \), and (d) \(C = 0.85 \)

\[
U_{\text{eff}}(r, \theta) = \frac{mc^2}{q} \frac{\sigma_0^2}{2} \left(\frac{r}{\lambda} \right)^2 \left[1 + 2\eta \left(\frac{r}{R} \right)^4 \cos 4\theta + \eta^2 \left(\frac{r}{R} \right)^8 \right]
\]

\[
\eta = \frac{G_6}{G_2} R^4
\]
Space-Charge Density of the Matched Beam

\[U_b = -\frac{\gamma^2}{1 + \left(\frac{\beta \gamma I_c R^2}{2 I \epsilon^2}\right)} U_{\text{eff}} \]

Space charge density

\[\rho_b = \rho_o \left(1 + 10 \xi r^4 \cos 4\theta + 25 \xi^2 r^8 \right) \]

Dynamics of 150 keV, 100 mA, 0.06 \(\pi \) cm mrad proton beam in a structure with \(G_2 = 48 \) kV/cm\(^2\) and \(G_6 = -1.3 \) kV/cm\(^6\).
Matched and Realistic Truncated Beam Distributions

(a) Self-consistent particle distribution \(\rho_b = \rho_o (1 + 10 \zeta r^4 \cos 4\theta + 25 \zeta^2 r^8) \) of the matched beam in quadruple-duodecapole channel with parameter \(\zeta = -0.03 \) and (b) beam with distribution \(\rho_b = \rho_o [1 - (r / R)^2]^2 \) truncated along equipotential lines of effective focusing field.
Dynamics of 150 keV, 100 mA, 0.06 π cm mrad proton beam in a structure with $G_2 = 48 \text{ kV/cm}^2$.

Adiabatic matching of 150 keV, 100 mA, 0.06 π cm mrad proton beam in a structure with $G_2 = 48 \text{ kV/cm}^2$, $G_6 = -1.9 \text{ kV/cm}^6$.

Los Alamos
NATIONAL LABORATORY
Established by the United States of America by Act of Congress on July 16, 1943
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
Combined FODO Structure with Arbitrary Multipoles*

Effective potential:

\[
U_{\text{eff}} = \left(\frac{\sigma_o \beta c}{L}\right)^2 \left[\frac{r^2}{2} + f \zeta r^m \cos(m-2)\theta + \zeta^2 \frac{r^{2(m-1)}}{2} \right]
\]

*Y. Batygin, A. Scheinker, TUPWA064, IPAC13
Figure 3: FODO quadrupole-duodecapole channel with combined lenses with the period of $L = 15$ cm, lens length of $D = 5$ cm, and adiabatic decline of duodecapole component to zero over a distance of 7 periods.

Y. Batygin, A. Scheinker, WEPPR039, IPAC12
Energy 35 keV
Current 11.7 mA
Emittance 0.05 π cm mrad
Quadrupole $G_2 = 0.03579$ T/cm

Quadrupole-Duodecapole Channel

Quadrupole Channel

Numbers indicate FODO periods
Fraction of particles outside the beam core \(2.5\sqrt{\langle x^2 \rangle} \times 2.5\sqrt{\langle y^2 \rangle}\) as a function of FODO periods: (blue) quadrupole channel, (red) quadrupole-duodecapole channel.
CST Particle Studio Simulation of Halo Formation in Quadrupole Channel
CST Particle Studio Simulation of Halo Suppression in Quadrupole-Duodecapole Channel
Final Particle Distributions in Focusing Channels

Quadrupole Channel

Quadrupole-Duodecapole Channel
Summary

1. Beam emittance growth and halo formation due to free-energy excess in high-brightness beams are unavoidable in linear focusing channel.

2. To prevent beam emittance growth and halo formation, focusing fields have to be a nonlinear function of radius.

3. Quadrupole-duodecapole focusing structure is an effective way to suppress beam halo formation.