PRODUCING TWO-PHOTON PLANAR SOURCES
AT AN ELECTRON ACCELERATOR

NSC KIPT, Kharkov, 61108, Ukraine

Abstract
Gamma-sources with two-energy spectrum are used in industrial and medical diagnostics for quantitative introscopy (absorptiometry). Commonly, such sources are obtained by a reactor technology (153Gd) or using an ultrastable X-ray tube with properly shaped spectrum of radiation. We suggested utilize the 179Ta isotope (Ex~55 keV, \(\tau_{1/2}=665\) days) in combination with 57Co (E\(\gamma=122\) keV, \(\tau_{1/2}=273\) days). A soft technology for producing the planar sealed 179Ta/57Co sources at an electron accelerator by X-ray irradiation of a target from natural tantalum and nickel was developed. The isotope yield and absorbed power of radiation in the target device vs electron beam energy were calculated using a modified transport code PENELOPE-2008. The results of the experiment conducted to determine the yields of the target isotopes and by-products are in good agreement with the simulation data.

INTRODUCTION
A multiphoton absorptiometry technique is widely used in medicine, industry, inspection checkup, etc. (see, e.g., [1,2]). So in medicine, the \(\gamma\)-sources on basis of the 125J (E= 27.5 keV, \(\tau_{1/2}=60\) days) and 155Gd (E = 44 keV and 100 keV, \(\tau_{1/2}=241\) days) isotopes are applied for diagnostics of osteoporosis (the most widespread age-related illness of the bone system). Both the isotopes are produced by radiochemical separation from the targets irradiated on a reactor [3]. A period of the target exposure makes from 300 hours (125J) to 2 months (155Gd).

Last two decades, a method of dual absorptiometry using the X-ray tubes with a specially shaped two-component spectrum (the DEXA technique) is actively used also [4]. To obtain a 2D-image, a source of radiation and a detector are synchronously moved relative to an object situated between them. In view of sophistication, such equipment is rather expensive.

In the communication, a soft method for manufacturing the planar one- and two-photon sources on basis of the 179Ta (Ex=55 keV, \(\tau_{1/2}=665\) days) and 57Co (E \(\sim=122\) keV, \(\tau_{1/2}=271\) days) isotopes with the use of an inexpensive electron accelerator is offered.

BASIC REACTIONS
179Ta is produced by the reaction 181Ta(\(\gamma\),2n)179Ta. It can be realised in a target from natural tantalum (the 181Ta abundance is 99.99%) exposed to X-ray with energy of photons above the threshold of the reaction (14.2 MeV - see Fig. 1).

57Co can be manufactured on 58Ni in a target from natural nickel (the 58Ni abundance is 68.27%) simultaneously via two channels (see Fig.2) 58Ni(\(\gamma\),p)57Co, 58Ni(\(\gamma\),n)57Ni → 57Co.

For photonuclear production of isotopes, an electron beam should be preliminary transformed into a flux of the X-ray (bremsstrahlung) photons. This process can be materialized both in a special intermediate converting target and in an isotope target directly. By the end of the exposure period \(t\), its activity \(A(t)\) subject to the decay of the new nuclei during irradiation can be presented in the form

\[A(t) = \frac{\lambda y I_0}{e} \cdot t \cdot D(\lambda t), \]

where \(y\) is the yield of the new nuclei reduced to one electron of the primary beam, \(\lambda\) is the decay constant, \(D(\lambda t)\) is the factor of the target deactivation, \(I_0\) is the...
average beam current,
\[D(\lambda t) = \frac{1 - \exp(-\lambda t)}{\lambda t}. \] (2)

In case of a channel with the formation of an intermediate nucleus \(^{57}\text{Ni}\), its contribution \(A'(t)\) to the activity of the target isotope can be determined from the expression
\[A'(t) = \lambda_{y'} \frac{I_0}{6} \frac{\lambda'}{\lambda - \lambda'} \left[D(\lambda t) - D(\lambda t')\right], \] (3)
where \(y'\) is the normalized yield of the intermediary, \(\lambda'\) is its decay constant.

It follows from the formulas (1) - (3), that at a period of the nickel activation \(t >> 35.6\) h, the contribution of the \(^{58}\text{Ni}\) \((\gamma,n)\) \(^{57}\text{Ni} \rightarrow ^{57}\text{Co}\) channel in the total yield of \(^{57}\text{Co}\) amounts up to 24 %.

SIMULATION AND BENCHMARKING

The photonuclear yield of the target isotopes and principal impurities, and also the absorbed radiation power in the elements of a target device depending on electron energy were determined by a simulation technique on basis of a modified transport code PENELLOPE-2008 [6, 7]. For a check of accuracy of the simulation, an activation of two stacked foils from tantalum and nickel (each of 0.1 mm thick) by X-ray radiation with end-point energy of 40 MeV during 2 hours has been conducted. The major activity of tantalum after irradiation is caused by \(^{180}\text{Ta}\) \((\tau_{1/2}=8.15\) h), which is produced in the reaction \(^{181}\text{Ta}\) \((\gamma,n)\) \(^{180}\text{Ta}\) and decays quickly (see Table 1).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>(^{179}\text{Ta})</th>
<th>(^{180}\text{Ta})</th>
<th>(^{57}\text{Co})</th>
<th>(^{57}\text{Ni})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simul.</td>
<td>1.11</td>
<td>6.06 \times 10^3</td>
<td>1.92</td>
<td>154</td>
</tr>
<tr>
<td>Exper.</td>
<td>1.08</td>
<td>6.16 \times 10^3</td>
<td>2.16</td>
<td>126</td>
</tr>
</tbody>
</table>

In Figs. 3 and 4, the spectra of the activated foils after their cooling are shown.

Figure 3: \(\gamma\)-spectrum of activated Ta (33 days after EOB).

Figure 4: \(\gamma\)-spectrum of activated Ni (17 days after EOB).

Figure 5: Low-energy part of the spectrum of the combined \(^{179}\text{Ta}/^{57}\text{Co}\) source.

OPTIMIZATION OF PRODUCTION TARGET

In the spectrum of the X-ray radiation of \(^{179}\text{Ta}\), the lines 7.9 keV (20.2 %), 54.07 keV (21.9 %) and 54.61 keV (12.6 %) determine the major intensity [8]. For the two last, the free range of the photons in tantalum is ~0.1 mm. On the other hand, the range of the bremsstrahlung photons with energy exceeding the reaction threshold makes ~1 cm. Thus the \(^{179}\text{Ta}\) nuclei can be effectively generated within a target thickness that is by two orders of value higher than the characteristic thickness of a layer of the self-absorption of photons which this isotope irradiates. Therefore, an obvious option of the structure of a production target is a stack of thin foils. Other variant enabling to receive an extended quasi-homogeneous \(\gamma\)-source, is a structure of a target in the form of a roll with its rotation under activation with an electron beam [9].

The calculations conducted have shown that it is a possibility to increase the total \(^{179}\text{Ta}\) yield by increasing the thickness of a wall of the roll. However, an average value of the linear activity of a tape-like \(\gamma\)-source received...
in such a way will decrease. So the linear activity reaches its maximum at a thickness of the wall of 2÷3 mm [10]. Considering also the self-absorption of photons, a thickness of the tape of 0.1 mm is close to the optimum value. In this case, the line with energy 7.9 keV is practically absorbed.

In Fig. 6, the variant of a target device for co-production of the 179Ta and 57Co sources is given. It consists of a casing 1 with the enclosed isotope target 2 as a two-layer cylinder by an external diameter of 2.35 cm and a central passage 3 for cooling water of 0.98 cm in diameter. The roll of the tantalum tape forms the external layer of the target. In this region, both a conversion of the electron beam into bremsstrahlung and the 179Ta manufacturing take place. An inner layer of the target of 1.80 cm in diameter is formed with a nickel tape of 0.1 mm thick, in which 57Co is produced. The casing from aluminium has an entrance window 4 (Ti, 50 μm) for electron beam passage. Between the target and the casing, there is a 1 mm gap for cooling water. For uniform distribution of the generated activity and absorbed radiation power, the electron beam is scanned along the axis of the target with its simultaneous rotation.

The developed target device and its activation regime simultaneously up to 18 the 179Ta planar sources with activity ~1 GBq and the same quantity of the 57Co sources with activity ~2.2 GBq measuring 10x10 cm each at an electron accelerator with the routine parameters (40 MeV; 250 μA) during a 500 h run. The yield of the long-lived impurities at EOB in tantalum does not exceed of 5 %, and in nickel of 16 % from the activity of the target isotopes.

Table 4: Capacity of the Isotope Production Techniques (100h run)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Installation</th>
<th>Parameters</th>
<th>Yield, GBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>153J</td>
<td>Reactor</td>
<td>5×10^{13}n/cm²s</td>
<td>14</td>
</tr>
<tr>
<td>153Gd</td>
<td>Reactor</td>
<td>6×10^{13}n/cm²s</td>
<td>0.13</td>
</tr>
<tr>
<td>179Ta</td>
<td>Electron Linac</td>
<td>40MeV; 250μA</td>
<td>3.7</td>
</tr>
<tr>
<td>57Co</td>
<td>Electron Linac</td>
<td>40MeV; 250μA</td>
<td>8.2</td>
</tr>
</tbody>
</table>

REFERENCES