PROSPECTS FOR THE USE OF PERMANENT MAGNETS IN FUTURE ACCELERATOR FACILITIES

J. Chavanne, G. Le Bec, ESRF, Grenoble, France

Abstract

Permanent magnet based accelerator magnets may offer a viable alternative to their conventional electromagnetic counterparts for many applications, especially where strong gradients and low power consumption are needed. For example, the development of future light sources based on ultimate storage rings needs to be done in an important energy saving context aiming at a significant reduction in operational costs. After more than two decades of continuous developments in the field of permanent insertion devices, a wealth of knowledge of different issues such as aging effects has been gained. With this technology we now seem ready to leap into the design and construction of advanced accelerator magnets. This talk reviews the status of the permanent magnet technology and the perspectives for its implementations in standard lattice magnets, highlighting both the advantages and the challenges as compared to electromagnetic magnets.

INTRODUCTION

Permanent Magnet (PM) devices of different types have been used in accelerators for more than 20 years; a large majority of them being Insertion Devices (IDs). This is easily explained by a high demand resulting from the construction of many 3rd Generation Light Sources (3GLS) and, more recently, LINAC based Free Electron Lasers (FELs). During these years, the progress made in IDs was significant, the aim being to increase the X-ray brilliance of undulator sources. Issues regarding the PM stability in accelerators has been the object of much attention through many studies on radiation induced demagnetization on the PM arrays of IDs.

Another area of practical interest in PM structures is found in PM multipole used in the final focus lens in colliders. Here the compactness and performance of the PM structures are important criteria.

To date, there are almost no PM structures used as standard components in accelerator lattices, the lone exception being the Fermilab recycler [1]: a 3.3 km circumference ring based entirely on magnets energized with Strontium ferrites. The choice of ferrite magnet material was motivated by the low field requirements, the low costs and proven stability of the material.

PERMANENT MAGNET MATERIALS

Properties of PM Materials

PM materials combine at room temperature a spontaneous magnetization and coercivity. The spontaneous magnetization is a property of 3d transition metals such as iron, cobalt or nickel. The coercivity is linked to the anisotropy of the material. In modern materials such as Samarium-Cobalt (SmCo) or Neodymium-Iron-Boron (NdFeB), a strong uniaxial magnetocrystalline anisotropy is provided by the rare earth elements Sm or Nd. These compound are usually oriented, using for example the powder metallurgy, to obtain optimal field performance. PM materials are therefore characterized by an easy axis along which usual quantities like the remanence B_r, intrinsic coercivity H_{cj} or coercive force H_{cy} are given in the manufacturer’s data sheets (Figure 1). The general relation between the magnetic induction B, the magnetization M and magnetic field H is:

$$\vec{B}(\vec{H}) = \mu_0 (\vec{H} + \vec{M}(\vec{H}))$$ (1)

The field performance of a PM device relies primarily on the remanence B_r of the PM material in use. The magnetic stability is a feature of the intrinsic coercivity H_{cj}.

![Figure 1: Magnetization curve of a modern PM material and definition of usual magnetic quantities.](image)

For accelerator applications only PM materials with rectangular hysteresis cycles are in use, i.e. materials with $|\mu_0 H_{cj}| \geq B_r$. Only materials such as ferrite, NdFeB or SmCo (SmCo$_5$ and Sm$_2$Co$_17$) can be used therefore. Table 1 gives the typical values for the remanence and coercivity at room temperature of these PM materials. Note that for the NdFeB material, there is a trade off between remanence and coercivity. High remanence grades have moderate coercivity and high coercivity grades have moderate remanence. This feature originates from the amount of additive elements such as Dysprosium (Dy) in the material. The substitution of some amount of Nd by Dy in known to improve the coercivity of the magnet but also to reduce the remanence due to the inverse magnetic coupling between Fe and Dy. However, recent development in NdFeB/PrFeB materials such as...
the Grain Boundary Diffusion (GBD) method has shown
that the coercivity of these materials can be largely
increased by increasing the Dy content at the grain
boundaries without impacting on the remanence. This
method is however limited by the thickness that can be
properly diffused, of the order of a few millimetres.

Table 1: Typical Properties of PM Materials Suitable for
Accelerator Systems

<table>
<thead>
<tr>
<th>Material</th>
<th>Br [T]</th>
<th>μ₀ Hcj [T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strontium Ferrite</td>
<td>0.2 to 0.42</td>
<td>0.2 to 0.4</td>
</tr>
<tr>
<td>NdFeB</td>
<td>1.42 to 1.15</td>
<td>1.4 to 3.3</td>
</tr>
<tr>
<td>SmCo5</td>
<td>0.8 to 0.9</td>
<td>3</td>
</tr>
<tr>
<td>Sm2Co17</td>
<td>1.05 to 1.15</td>
<td>> 2</td>
</tr>
</tbody>
</table>

PM materials are often compared using the maximum
energy product (BH)max which represents the maximum
density of magnetic energy stored in the material. The
comparison of different materials on the basis of this
parameter can give, for a given magnetic geometry, an
estimate of the relative PM volume necessary to
generated the field in the area of interest. Figure 2 shows
the evolution of the (BH)max for different PM materials
over the last century.

PM materials are often compared using the maximum
energy product (BH)max which represents the maximum
density of magnetic energy stored in the material. The
correction of different materials on the basis of this
parameter can give, for a given magnetic geometry, an
estimate of the relative PM volume necessary to
generated the field in the area of interest. Figure 2 shows
the evolution of the (BH)max for different PM materials
over the last century.

\[\vec{j}_{v} = \nabla \times \vec{M} \]
\[j_{s} = M \times \vec{n} \]

with \(\nabla \) being the differential operator and \(\vec{n} \) the
unit vector normal to the boundary of the magnetized media.
For magnetic structures built only with magnetized
materials such as permanent magnets and iron type
pieces, applying a 3D scaling factor \(k \) to the structure
yields current densities \(\vec{j}_{v} = \vec{j}_{v}/k \) and \(j_{s} = j_{s} \) at
the corresponding points between the initial and scaled
structure. From the use of the Biot and Savart law one can
easily show that the magnetic field obtained in the scaled
structure is the same as in the initial structure. On the
other hand, with a similar reasoning using conductors
with constant current density, one will obtain a magnetic
field reduced by a factor of \(k \) in the scaled structure.
Obviously, the current density can be adapted to mitigate
the scaling effect, however, for scaling factors
substantially lower than 1, the current density will, at
some stage, be limited by the Joule effect. The only
alternative to go beyond this limit is to switch to the
superconducting technology. From this brief analysis one
can immediately conclude that, for small magnet
apertures, PM structures can be extremely compact. Since
the present trend in accelerator projects is to reduce the
magnet apertures there is consequently an increasing
interest for the PM technology. For PM materials with
uniform and rigid magnetization, the representation with
fictitious current densities reduces to surface densities
because the volume component vanishes. The rigidity of
the magnetization corresponds to materials with relative
permeability equal to 1. This approximation is acceptable
for PM material including ferrite, SmCo and NdFeB. In
this case magnet blocks can be represented with a Current
Sheet Equivalent Model (CSEM) which can be used to
evaluate the magnet field of some PM structures with a
few per cent error. This method is the basis of the 3D
magnetostatic code RADIA developed at the ESRF since
1998 [2].

**USE OF PERMANENT MAGNETS IN
ACCELERATORS**

Synchrotron Light Sources

A common denominator between all 3GLS is the
conventional resistive magnet technology used to build up
the accelerator lattices and Permanent Magnet (PM) based
Insertion Devices (IDs) for the production of high quality
X-ray beams [3,4]. PM IDs are also at the heart of LINAC
based Free Electron Lasers (FELs) [5,6]. Indeed, high
performance NdFeB materials have been used massively
for the construction of a large majority of undulators
worldwide. The magnetic structures used for IDs are
based on Halbach designs [7]. Figure 3 shows
schematically the magnetic structures used for undulators,
the top part represents a Pure Permanent Magnet (PPM)
with 4 blocks /period and the bottom figure shows a
Hybrid Permanent Magnet (HPM) structure including...
Iron poles. Magnetic periods of undulators are in the range of 10 mm to 400 mm. Because the magnetic field of undulators needs to be varied, the two magnetic arrays are mounted on stiff movable girders placed on either side of a vacuum chamber. The largest field achieved with a PM ID was 3.1 T at a gap of 11 mm and an asymmetric wiggler developed at the ESRF [8].

The peak field B_0 along the electron beam axis can be approximated with a simple expression:

$$B_0 = \alpha B_r \exp(-\beta \pi gap \lambda_0)$$

where α is a parameter accounting for the magnet technology and β a 3D correction factor (close to 1). Equation (3) suggests that the most obvious way to increase the peak field for a given period is to reduce the minimum gap. However, a limitation is found for conventional IDs due to the required thickness of the vacuum chamber (currently about 10 mm). To remove this limitation, the undulator technology has evolved toward In-Vacuum Undulators (IVUs) with small periods and apertures (Figure 4) [9]. Since 2004, the technology of Cryogenic Permanent Magnet Undulators (CPMUs) has progressively matured as a logical evolution of conventional IVUs [10–12]. With the CPMU technology, some limitations found in the performance and stability of permanent magnet materials at room temperature can be overcome. One can highlight the main features of CPMUs as follows:

- Dramatic increase of PM coercivity above 5 T for all NdFeB or PrFeB materials
- Field remanence between 1.55 T and 1.7 T
- Specific Pr$_2$Nd$_{1-x}$Fe$_x$B are being developed by PM manufacturers [10,13].

Recently, a new magnet lattice based on a 7-Bent Achromat (7BA) as adopted for the MAX-IV project [14] was proposed for the 6 GeV storage ring of the ESRF [15]. This concept is being adapted by other facilities such as APS and SPRING8 for similar upgrades. With this new lattice, the ESRF is expecting to reach an electron beam horizontal emittance of about 150 pm which represents a reduction factor of 27 as compared with the existing situation. Because the new lattice must fit in the existing tunnel, a very compact magnet layout is needed. It includes several new types of small aperture magnets such as high gradient quadrupoles with up to 90T/m or moderate field dipole magnets with either longitudinal gradient or transverse gradient. Overall this upgrade project involves the construction of more than 1000 magnets. The energy efficiency of the accelerator complex is one of the constraints defined in the upgrade road map. In light of these considerations, permanent magnet structures are envisioned for some of the lattice components. As a general rule, the PM structures should be as simple as possible with limited field variation in order to be economically viable. The PM structures should combine PM blocks and soft iron (Hybrid devices) to limit the constraints on the magnetic tolerances for the PM blocks. Because of their fixed field, dipoles magnets can be good candidates for a migration to the PMs. The...
new lattice of the ESRF storage ring will include 128 dipoles with longitudinal gradient (DLs), each of them being built out of segmented assemblies of 5 dipole modules with different field strengths. Each DL has a length of about 2 m. Figure 6 shows the design of the magnetic field profile of a DL and Figure 7 compares the overall geometry of resistive and PM versions of DLs; both devices have the same aperture of 26 mm at the beam. The weight of the PM versions is three times smaller than that of the resistive version. The PM structure mixes SmCo17 and Strontium ferrites in the different modules.

![Figure 6: Longitudinal field profile for a DL magnet.](image)

![Figure 7: Resistive and PM versions for DL magnets.](image)

PM dipoles are being considered in the SIRIUS project [16] and SPRING8 upgrade project [17].

Colliders

Since the end of the 90s, PM quadrupoles have been developed as components of final focus lenses for colliders [18–20]. The main driving criteria is the compactness of the magnets, the high gradient achievable and low sensitivity to the solenoidal field from adjacent detectors. The 2D theory of multipolar PM structures was initiated by K. Halbach in 1979 on the basis of the CSEM method [21]. For a PM multipole delimited by an inner radius \(R_1 \) and an outer radius \(R_2 \), the magnetic induction \(B(z) = B_y(z) + iB_x(z) \) at position \(z = x + iy \) in the magnet aperture is expressed as:

\[
B(z) = B_z \frac{n}{n-1} \left(\frac{z}{R_1} \right)^{n-1} \left(1 - \left(\frac{R_1}{R_2} \right)^{n-1} \right)
\]

\[
\frac{n}{n-1} \left(1 - \left(\frac{R_1}{R_2} \right)^{n-1} \right) = \ln(R_2 / R_1)
\]

(4)

where \(B_z \) is the remanence of the permanent magnet material. The integer \(n \) is the multipole order, \(n=1 \) for a dipole, \(n=2 \) for a quadrupole ... etc. The magnetization inside the PM materials is assumed to vary continuously with the azimuthal angle according to:

\[
M(\theta) = M_y + iM_x = M_0 \exp((n+1)i\theta)
\]

(5)

Practically, a continuous variation of the magnetization is not feasible. A segmentation approach can be adopted. For a segmented PM structure a more detailed study can be done [21]. The PM multipole can also be built using permanent magnets and iron type material for the poles (hybrid multipole). Figure 8 compares schematically the two types of structures for a quadrupole. The hybrid design is generally more suitable if high field quality is required. Moreover, it can be modified to accommodate coils to add some field variation.

![Figure 8: schematic representation of segmented permanent magnet multipole (quadrupole).](image)

Projects of linear colliders such as CLIC are pushing the development of new types of hybrid quadrupoles [22]. Moreover, the project involves also a large quantity of variable field hybrid quadrupoles [23]. In many cases variable field multipoles are based on the mechanical adjustments of PM structures. For systems with tight requirements for the transverse stability of the magnetic axis the movable option may require challenging and costly engineering [24, 25].

MAGNETIC STABILITY OF PM STRUCTURES

Time Stability

A magnetized permanent magnet is in a metastable energy state which is separated from a lower energy state by energy barriers linked to the coercivity of the material. The lower energy state corresponds to a reduced magnetization reached through thermal activation. It corresponds to a statistical process which has been studied by several authors [26, 27].

At a constant temperature the magnetization changes linearly with the logarithm of time:

\[
\Delta M = M(t) - M(t_0) = -s(H) \ln \left(\frac{t}{t_0} \right)
\]

(6)

where \(s \) is the so called magnetic viscosity and \(t \) and \(t_0 \) are the times elapsed from the initial magnetization of the material. This representation is generally valid for a limited time interval. However, several experiments show that it is still appropriated for typically periods of several years [28]. The magnetic viscosity depends on the field \(H \). It increases when the field in the magnet material...
approaches the intrinsic coercive field \(H_c \) where it reaches a maximum. Since the magnetic field of a PM structure depends linearly on the magnetization of the permanent magnets, the relative change on magnetic induction in the magnet aperture will follow that of the magnetization:

\[
\frac{\Delta B}{B_0} = \frac{\Delta M}{M_0} = -\frac{s}{M_0} \ln(t/t_0) = -\lambda \ln(t/t_0)
\]

where \(B_0 \) and \(M_0 \) are the induction and magnetization at time \(t_0 \) respectively. The stability of Strontium ferrite was investigated for the construction of the Fermilab recycler [29]. Typical values of \(\lambda \approx 1 \times 10^{-4} \) were measured corresponding to a relative field degradation lower than \(10^{-3} \) between 10 days and 30 years after the initial magnetization of the magnet blocks. Similar studies on NdFeB/Sm\(_2\)Co\(_{17}\) type magnets have been done mostly to investigate the stability of these materials at high temperature but without enough accuracy to measure small changes at room temperature [28,30]. However, these materials have, at room temperature, a larger ratio \(\mu_0 H_c/Br \) which suggests a smaller magnetic viscosity than with ferrite type magnets. Nevertheless, dedicated measurements on relevant magnet prototypes should be done. The time stability can be improved using a pre-heat treatment of the permanent magnet material. The operation consists of temporarily moving the working point \((H,M)\) in the magnet closer to the intrinsic coercivity \(H_c \). With this method, the magnet material experiences a small loss in magnetization (generally smaller than 1%) which “removes” the residual weaknesses of the permanent magnets after manufacture. This process is commonly done for PM blocks used in accelerator magnets since it also stabilises the materials against radiation induced demagnetization [31].

Temperature Compensation

PM materials properties are temperature sensitive. Table 2 shows the temperature coefficients of the remanence and intrinsic coercivity for different PM materials. The field of a PM structure will change with temperature according to the temperature dependence of the remanence.

Table 2: Temperature Coefficients of Remanence and Coercivity for Different Types of PM Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>(\alpha Br) [%/C]</th>
<th>(\alpha Hc) [%/C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strontium Ferrite</td>
<td>-0.2</td>
<td>0.27</td>
</tr>
<tr>
<td>NdFeB</td>
<td>-0.08, -0.11</td>
<td>-0.5, -0.07</td>
</tr>
<tr>
<td>SmCo(_5)</td>
<td>-0.04</td>
<td>-0.2</td>
</tr>
<tr>
<td>Sm(2)Co({17})</td>
<td>-0.03</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

For PM devices with integrated field tunability by means of mechanical or electrical tuning, the impact of temperature variations can be easily compensated. For structures without any active correction, a passive method based on commercially available Fe-Ni alloys [32] having a Curie temperature at 40-100 deg C can be used [33]. As such, the magnetization of this material decreases strongly as the temperature increases. These materials have a typical temperature coefficient of -2.5 %/C which is considerably higher than the temperature coefficients of \(Br \) for PM materials. It is used to shunt some magnetic flux away from the region of interest, the amount of shunted flux being strongly dependent on temperature. This method of temperature compensation is used for the design of the PM DLs at the ESRF.

Radiation Damages

Radiation induced demagnetization has been a recurrent subject in 3GLS since the early 90s due to the development of small gap IDs. Generally, the field loss in undulators due to radiation induced demagnetization varies along the undulator. In some cases, it can be partially compensated with a small longitudinal gap tapering. For an undulator, a field loss of 0.2 % can impact significantly on the quality of the X-ray spectrum. This has triggered several studies on the radiation hardness on different PM materials [34–40]. The main outcomes from these studies are the following:

At room temperature, the Sm\(_2\)Co\(_{17}\) material shows the highest radiation hardness with respect to all types of radiation. NdFeB can have comparable resistance if the material has sufficiently high coercivity (\(\mu_0 H_c/Br > 3T \)) and includes a pre-heat treatment.

The resistance to radiation induced demagnetization of NdFeB/PrFeB materials is dramatically increased by cooling at cryogenic temperature. The cooled materials reach a similar level of resistance as that of Sm\(_2\)Co\(_{17}\) at room temperature.

The demagnetization mechanisms are similar to that resulting from a heating of the magnets. The full magnetization can be restored by a re-magnetization of the material. It suggests a process induced by thermal local spikes occurring at the grain boundaries of the NdFeB materials. Indeed, the coercivity of NdFeB material is mainly dominated by the nucleation of domains with reversed magnetization at the grain boundaries where the anisotropy is reduced. The best candidates for initiating thermal spikes are photo-neutrons generated in the showers behind the incident electrons in the material. Overall, and depending on the selected PM material, the field of a PM structure can experience a slow degradation versus time under radiation exposure. The fundamental question is therefore to determine the lifetime of a PM structure while preserving the required performance [40].

CONCLUSION

PM structures have been advantageously used in several areas of accelerators. The choice is generally dictated by compactness and performance. Future accelerators seem to favour a more intensive use of PM materials due to the reduction of magnet apertures and the
need to reduce the running costs of the accelerators. Studies related to the stability of PM devices for accelerators have made noticeable progresses during the past years. This area will probably receive additional attention in the near future.

REFERENCES

[17] T. Watanabe et al., TUPRO092, IPAC’14, to be published.