ENERGY CALIBRATION AND TUNE JUMPS EFFICIENCY IN THE PP AGS

Y. Dutheil, L. Ahrens, H. Huang, F. Méot, A. Poblaguev, V. Schoefer, K. Yip
Brookhaven National Laboratory, Upton, Long Island, New York, USA

Abstract

The AGS tune jump system consists of two fast quadrupoles used to accelerate the crossing of 82 horizontal intrinsic spin resonances. The fast tune jump of $\Delta Q_x = +0.04$ within 100 μs requires excellent localization of each of the 82 resonant conditions. Imperfect timing of the tune jumps results in lower efficiency of the system and lower transmission of the polarization through the AGS acceleration cycle.

Investigations during the end of the pp AGS Run13 revealed weaknesses in the energy measurement at high energy, causing less than optimal timing of the tune jumps. A new method based on continuous polarization measurement to determine the energy during the acceleration cycle has been developed. Strong operational constraints were taken into account to provide a convenient system of energy measurement. This is also used to calibrate the usual determination of the energy based on revolution frequency of the beam or measured dipole magnetic field.

This paper shows the tools developed and the results of the first tests during the AGS Run 14. Simulations of the expected tune jumps efficiency using the AGS Zgoubi model [1,2] are also presented and compared to experimental results.

INTRODUCTION

The AGS uses a dual partial snakes configuration. While this allows overcoming vertical spin resonances it also creates horizontal intrinsic spin resonances by tilting the stable spin direction away from the vertical axis [3]. Horizontal intrinsic spin resonances occur when $Q_x = Q_y = I$ with Q_x the spin tune, Q_y the horizontal tune and I an integer [4]. The resonant condition is satisfied twice per unit of $G\gamma$, resulting in 82 crossings from injection at $G\gamma = 4.5$ to extraction at $G\gamma = 45.5$, with G the anomalous g factor of the proton and γ the Lorentz factor. Although the depolarization across a single resonance is very small, the loss of polarization through the entire AGS accelerating cycle is estimated to be about 15% to 20% [5].

The polarization losses are mitigated by quickly changing the horizontal tune Q_x, increasing the crossing rate of the resonances. The tune jump system is composed of two fast quadrupoles. One of the main challenge to maximize the tune jump system efficiency is to accurately position each tune jump, centering it around the resonant condition.

Tune Jump Timing

The timing of the AGS tune jumps is critical. Errors in the timing of the tune jumps results in lower efficiency of the system. Figure 1 shows tracking results for the crossing of two horizontal intrinsic resonances around $G\gamma = 41$. The multiparticle trackings were done with the Zgoubi code [1] and with realistic beam and machine conditions. Realistic longitudinal emittance of 1.0 eV.s was used, leading to a beam energy spread of $\sigma_{G\gamma} = 0.02$. Although the energy spread varies along the AGS energy ramp Figure 1 is representative for most resonances on the AGS cycle.

Without momentum spread the resonance condition is very narrow. The tune jumps efficiency is constant and maximum until the jump misses the resonance. With momentum spread the resonance condition is large compared to the tune jump amplitude, mainly due to the spin tune spread of the beam. The tune jumps timing needs to be perfect for maximum efficiency. One can see that an error of $\pm 200 \mu$s would be unacceptable.

In the AGS the spin tune is function of beam energy and strengths of the two Siberian snakes. Measurement of the energy and horizontal tune along the ramp allows a dedicated application to automatically time each tune jump. However the measurement of the energy is complex and believed to limit the accuracy on the timing of the tune jumps [6]. Two radically different methods to measure the energy will be presented and experimental data will be compared.

1 This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The conventional energy measurement uses the GgammaMeter to measure the energy along the ramp. The energy is determined using the measured RF frequency \(f \) and average radial shift of the beam \(dR \) (Eq. 1) or the measured field \((B_{\text{inj}} + B_{\text{clock}}/C_{\text{scal}}) \) and the average radius (Eq. 2):

\[
G\gamma = \frac{1}{\sqrt{1 - \left(\frac{f}{f_0}\right)^2 - \left(\frac{dR}{R_0}\right)^2}}
\]

(1)

\[
G\gamma = \frac{1}{\sqrt{(1 + \frac{\gamma_2}{\gamma_R f dR/R_0})^2 R_0 + B_{\text{inj}}/B_{\text{clock}}/C_{\text{scal}}}} + 1
\]

(2)

With \(\gamma_R \) the transition energy, \(h \) the harmonic number, \(R_0 \) the radius and \(\rho_0 \) the bending radius of the AGS. The parameters in red \((f, dR \) and \(B_{\text{clock}} \)) are measured quantities while the blue ones are machine parameters \((R_0, \gamma_2, \rho_0, B_{\text{inj}} \) and \(C_{\text{scal}} \)) that can be adjusted and the black are fixed physical constants.

The GgammaMeter is cross calibrated: the machine parameters in equations 2 and 1 are adjusted manually until the two methods report the same energy along the ramp. But at high energy the measurement based on the RF frequency (Eq. 1) is very sensitive to \(f \) and \(dR \), due to the highly relativistic beam.

To overcome this problem an application named AgsGgammaCal was developed to collect and average the data from consecutive cycles. By assuming that machine conditions do not vary over few tens of minutes, the data from hundreds of consecutive cycles can be averaged to considerably reduce the statistical uncertainty on the measured quantities. The application also features an automatic fitting algorithm to minimize the difference between equations 2 and 1 along the AGS acceleration cycle by adjusting \(R_0, C_{\text{scal}} \) and a special empirical parameter, not detailed here, that compensates for the response of the field measurement apparatus to the main dipole ramping rate.

ENERGY MEASUREMENT FROM ASYMMETRY

While the polarization in the AGS is only measured at extraction energy, a new method was developed to continuously measure the asymmetry during acceleration. The analyzing power \(A_p \) connects the averaged polarization on the vertical component \(S_z \) of the spin to the raw asymmetry \(A_s \) in Figure 2 by \(A_s = S_z \times A_p \). The analyzing power is only known at \(G\gamma = 45.5 \) so the measured asymmetry cannot give absolute beam polarization along the ramp but only relative numbers.

Spin Flip Timing

Figure 2 highlights a particular effect of the AGS partial snakes configuration. The stable spin direction flips across every integer in \(G\gamma \). This create a full spin flip of the beam seen in Figure 2 when the measured asymmetry changes sign.

It was proposed to use the spin flip measured by the polarimeter to accurately determine the crossing time of every integer \(G\gamma \) during the ramp. This method is completely independent from other measured quantities involved in the conventional energy measurement and could be used to calibrate the conventional energy measurement system.

The stable spin direction at a particular position of the AGS only depends on the beam energy. The expression of the vertical component of the stable spin direction as a function of the energy at the C15 polarimeter is shown in equation 3.

\[
n_{0,2}(G\gamma) = \frac{1}{\sin(\pi Q_s)} \left[\cos\left(\frac{A_w}{2}\right) \cos\left(\frac{A_c}{2}\right) \sin(G\gamma \pi) + \sin\left(\frac{A_w}{2}\right) \sin\left(\frac{A_c}{2}\right) \sin\left(G\gamma \frac{\pi}{2}\right) \right]
\]

(3)

The spin tune \(Q_s \) and the spin rotation angles of the two AGS snakes \(A_c \) and \(A_w \) are also used to compute the stable spin direction. Their dependences on beam energy are known. Finally the beam polarization \(P \) is linked to the measured asymmetry by:

\[
A_s = P \times A_p \times n_{0,2}(G\gamma)
\]

(4)

Using equation 4 one can determine the energy at a given timing assuming that:

- the analyzing power \(A_p \) is constant over the interested range. This only generates a small error if the range is small or in the later part of the cycle where the analyzing power varies slowly.

- the beam polarization is constant over the interested range. The polarization losses are likely spread along the acceleration cycle, hence this assumption would only introduce very small errors if the fitted range is small enough.

- the acceleration rate is constant. While the acceleration rate varies strongly at low and high energy, it remains almost constant elsewhere.
The assumption that \(P \times A_p \) is constant certainly have an effect on the final energy measurement. However the statistical uncertainties from the measured asymmetry is believed to be the main source of error in the energy measurement. Therefore systematic uncertainty associated to the above mentioned assumptions were not investigated and from now on we will only refer to statistical uncertainties.

Method

A fitting algorithm was developed to handle the different steps involved and the associated statistical uncertainty study. The method follows the steps below:

1. The energy measured using the conventional method is used to determine the acceleration rate around \(GY = I \) with \(I \) an integer. The range of energy giving the best results appears to be for a range of 1.25 units on either side of \(GY = I \). The energy can then be expressed as a function of time by

 \[
 GY(t) = A_r \times t + b
 \]

 where \(t \) is the time and \(A_r \) is the acceleration rate.

2. Replacing the dependence in \(GY \) in equation 3 and using the approximations mentioned earlier we can express the measured asymmetry as a function of time:

 \[
 A_s(t) = \alpha \times \Delta \tau (A_r \times t + b)
 \]

 where \(\alpha = P \times A_p \). Equation 6 can now be fitted to the data showed Figure 2 by varying the parameters \(b \) and \(\alpha \) while the acceleration rate is taken from the conventional energy measurement method. Figure 3 shows the results around \(GY = 39 \).

3. The fitted parameter \(b \) is used together with the acceleration rate \(A_r \) to determine the timing \(T_{GY=I} \) at which \(GY = I \) is crossed. We now have a pair \((T_{GY=I}, (GY = I) \pm \Delta b)\) where \(\Delta b \) is the uncertainty on the parameter \(b \).

4. The iteration of the previous steps over each integer \(I \) between injection and extraction generates a set of data points along the full AGS cycle.

Due to the approximations made earlier the results are clearly unreliable below \(GY = 11 \). While the \(\chi^2/ndf \) is very close to 1 for most of the ramp it gets very large below \(GY = 11 \), likely due to the assumption that the acceleration rate is constant over the fitted range. Elsewhere the \(\chi^2/ndf \) very close to 1 and the small uncertainty in the fitted \(b \) parameter (see Figure 3) gives strong confidence in the quality of the measured data and confirms the validity of the approximations made earlier.

EXPERIMENTAL RESULTS

Energy measurement was derived from polarization ramp measurements taken in May 2014. Results showed an uncertainty in the estimated energy of \(\Delta(GY) \sim 3 \times 10^{-3} \) equivalent in timing uncertainty to 30 \(\mu \)s. In addition results showed consistent values between measurements taken few days apart.

Differences between energy measured using the usual method based on the measured dipole field and using the polarization ramp measurement were on the order of 100 \(\mu \)s to 200 \(\mu \)s. As seen Figure 1, such error on the tune jump timing leads to non optimal efficiency of the tune jump system.

No clear evidence from polarization measurements showed improved polarization transmission in the AGS, after the tune jump timings were corrected using the energy measured from polarization ramp measurements. However the expected differences are small and more measurements should be compiled to clearly highlight the benefit of this energy measurement method.

REFERENCES

