Abstract

A new superconducting elliptical cavity is suggested for the High Energy (HE) part of the Project X linac. The cavity is suitable to operate in CW regime with high beam current (10 mA), which makes the synergy possible with proposed Accelerator Driven Subcritical systems (ADS) [1]. We present the algorithm of the cavity shape optimization, comprehensive tolerances analysis and the solution for monopole High Order Modes (HOM) damping. Based on these results we estimated the probabilities of cryogenic losses per cryomodule and spread of the longitudinal emittance due to the resonance excitation of monopole HOMs in the HE linac for Project X.

INTRODUCTION

Project X is a future high intensity proton accelerator to be built in Fermi National Accelerator Laboratory targeting the intensity frontier with focus on the study of rare subatomic processes and supporting neutrino experiments. Project X would provide, by a large margin, better neutrino, kaon and muon beams compared with existing facilities. At the same time the proposed facility would not only allow for numerous experiments at the intensity frontier, but Project X technique may be used directly in Accelerator-Driven Subcritical systems (ADS) for energy generation and the transmutation of a nuclear waste. The ADS applications require a continuous wave (CW) multi-megawatt proton beam with high average current. Thus, the Project X capability for a future upgrade is critical.

CAVITY SHAPE OPTIMIZATION

The initial design of the β_{geom}=0.9 elliptical cavity for Project X was optimized for CW operation with 1 mA average beam current and has a conservative 5° walls angle [3]. Moderate sloping walls guarantee a good surface processing, make the cavity stiffer and, thus, reduce the microphonics effect. At the same time, it is known, that the smaller degree of the cavity wall slope (even negative) allows to reduce the surface electric and magnetic fields. Fortunately, the recent JLAB experiment with β_{geom}=0.61, 650 MHz single cavity has shown a very good result even the cavity has a flat (0°) walls [4]. Also the detailed mechanical analysis has proved that the proper position of the stiffening ring can provide the good mechanical stability for such a cavity [5]. Therefore, we decided to limit the cavity shape only by the negative wall slope.

There is a well developed strategy how to optimize the shape of the elliptical cavity for β_{geom}=1 [6]. Similar algorithm can be adopted for the design of the cavity β<1, but the optimization becomes more challenging because of additional degree of freedom – the cell period (b_{geom}). Nevertheless, modern computers are able to simulate a
single variant of the 2D cell geometry for less than a minute with a high accuracy of eigenfrequency and surface fields. Therefore, it is possible to perform a full multi-dimensional optimization of the $\beta<1$ cavity within a reasonable amount of time.

The goal of the cavity shape optimization is to minimize both surface electric E_s and magnetic H_s fields. Hence, the result is not just a single point but the series of limiting curves in the E_s versus H_s coordinates. The idea is illustrated in Figure 3. Since there are only four independent parameters "A", "B", "a", "b" – the radii of two conjugated ellipses, then, by a proper choice of each parameter range, one can limit the total number of the examined cavity shapes. The dependences of optimal surface fields on cavity wall slope and cell period are shown in Figure 4. One can see, that a simple changing the wall slope from five degrees to one allows reducing the surface electric by 10% or the surface magnetic field by 4%. At last we broaden out the scope of the optimization and included the radius of the iris. A large cell aperture has following evident advantages: a) higher cell to cell coupling and a better field flatness; b) lower possible beam losses for a high beam current operation; c) provide better coupling with operating mode and make the antenna penetration less; d) lower the HOMs quality factors and, thus, reduce potential cryogenic losses. The simulations predict only ~2.5% surface magnetic field enhancement if we would increase both the cell aperture to 120mm and the cell period to $\beta_{geom}=0.92$. Thus, we decided to propose these parameters as the alternative for the Project X high beta cavity (see Figure 5).

Figure 6: Old (blue) and new (red) cell shapes (a) and results of the end cell optimization (b).

Finally we analyzed the full geometry of the 5-cell accelerating structure and compared it with the present design. The results of the comparison are shown in Figure 7. The major advantage of the proposed cavity is that the quality factors Q_{ext} of the monopole HOMs are suppressed below 106. At the same time both structures have similar RF losses and acceleration efficiency and, thus, it is possible to keep the same layout of the HE part of the linac.

Figure 7: Parameters of old (blue) and new (red) 5-cell accelerating structures (left table) and particles acceleration along the Project X linac.

HOM STATISTICAL ANALYSIS

Because of the fabricating tolerances and further surface processing the actual cavity shape never matches with the theoretical shape. Thus, there is a natural spread of the HOMs parameters from cavity to cavity. The HOM in the accelerating cavity is characterized by its

a) b) a) b)
frequency, shunt impedance and quality factor. We can reproduce the statistical deviations of these parameters with the following procedure. First, set the actual mechanical tolerances to the cell dimensions (±0.2mm). Secondly, tune the individual cell frequency by changing its period and preserving the field flatness along the cavity. Then, finally calculate a HOM spectrum of the derived 5-cell structure. It is possible to accumulate the data for further statistical analysis generating many random structures. The typical result for the Q_{ext} variation of monopole HOMs is illustrated in Figure 8 for the present 650 MHz, $\beta_{\text{geom}}=0.9$ Project X structure.

![Figure 8: The Q_{ext} variation of monopole HOMs for the 650 MHz, $\beta_{\text{geom}}=0.9$ Project X structure.](image)

Based on the predicted deviations of monopole HOMs frequencies and Q_{ext} we generated 10^5 random structures in order to estimate the probability of RF losses per cryomodule for Project X operation. The computing results are presented in Figure 9 for the old and new cavity designs respectively. One can see that the chance to get large cryolosses due to resonant monopole HOM excitation is significant for the present structure. The new cavity shape allows to suppress high Q monopole HOMs completely and, thus, to mitigate the large cryolosses problem.

![Figure 9: Probability of monopole HOMs RF losses per cryomodule in Project X linac for the 10 mA beam.](image)

Baseline Project X design has a complicate beam structure consisted of three sub-components (1MHz, 10MHz and 20MHz). Because the HOM and beam components frequencies are not multiple in general, the resonance HOM excitation by one of the beam component will cause that other will see its voltage at different phases. Hence, a HOM with high Q may introduce a significant energy variation along the beam train. The influence of an individual HOM is proportional to the amplitude of the beam spectrum line closest to the HOM frequency and the effect is accumulated along the linac. We performed the statistical analysis in order to calculate the probability of the beam longitudinal emittance growth. The result is summarized in Figure 10.

![Figure 10: The probability of a longitudinal emittance growth in the Project X linac for the 10mA beam current.](image)

The beam longitudinal emittance growth could be a significant problem for the high current operation of the present baseline of Project X CW linac. The proposed alternative design of the high beta cavity allows to limit the emittance growth by factor of two maximum.

CONCLUSION

An alternative version of the cavity for the HE section of the Project X linac is suggested. The cavity has larger 120 mm aperture and higher beta value of $\beta_{\text{geom}}=0.92$. Nevertheless, it demonstrates about the same field enhancement factors and acceleration efficiency. The proposed high beta cavity provides good monopole HOM damping and, thus, assure the reliable operation at high beam current. The cavity may be used for future ADS applications.

REFERENCES

[4] F. Marhauser, etc., “Preliminary Test Results from 650 MHz Single Cell Medium Beta Cavities for Project X”, SRF2011, Chicago, IL, USA.