Design and Applications of the Bmad Library for the Simulation of Particle Beams and X-Rays

David Sagan

Cornell Laboratory for Accelerator-Based Sciences and Education
Outline

Talk subject:
• Bmad library for particle & X-ray simulations.

Outline:
• Overview & history.
• Useful features.
• Bmad ecosystem of programs.
• ERL & X-ray simulations.
• Future plans.
Overview:

- Written in Fortran. Object oriented from the ground up:

  ```fortran
  type (lat_struct) lat
  call bmad_parser ('lat.bmad', lat)
  ```

- Has structure translation code for interfacing with C++.
- MAD like lattice syntax.
Brief History:
• Born at Cornell in mid 1990’s
• Started life as modest project: Just wanted to calculate Twiss functions and closed orbit.
• Initially Bmad used a subset of the MAD lattice syntax. Hence the name: “Baby MAD” or “Bmad” for short.

Over the years Bmad had evolved…
And Baby Grows Up...

Currently:
- ~1,000 routines
- ~100,000 lines of code

And it can do much more:
- X-ray simulations
- Coherent synchrotron radiation simulations
- Spin tracking
- HOM studies
- Beam breakup simulations in ERLs
- Intra-beam scattering (IBS) simulations
- Touschek lifetime
- Frequency map analysis
- Dark current tracking
- Etc., etc.
Bmad has a number of features that over the years have proven useful. Among these are:

- **Superposition** – Define overlapping elements.
- **Controllers** – Elements controlling attributes of other elements.
- **Element-by-element selection of the tracking method:**
 - `bmad_standard` Fast, nonsymplectic
 - `symp_lie_ptc` Symplectic tracking
 - `taylor` Taylor map
 - `linear` Linear tracking
 - `custom` Tracking with custom code
 - etc.
Superposition allows element overlap. In the lattice file:

```plaintext
cesr: line = (... q1e, dft, ip, dft, q1w ...)  
cleo: solenoid, l = 3.5, superimpose, ref = ip
```

And Bmad does the bookkeeping…

Simplifies life for both user and programmer:
- Simplifies lattice file construction.
- Simplifies varying element attributes in a program.
Bmad Ecosystem

Due to its flexibility, Bmad has been used in a number of programs including:

- **tao** General purpose design and simulation.
- **synrad3d** 3D tracking of synch photons, including reflections, within the beam chamber.
- **cesrv** On-line data taking, simulation, and machine correction for CESR.
- **dark_current_tracker** Dark current electron simulation.
- **freq_map** Frequency map analysis.
- **ibs_sim** Analytic intra-beam scattering (IBS) calculation.
- **touschek_track** Tracking of Touschek particles.

Code reuse: Modules developed for one program can, via Bmad, be used in other programs.

Tao plotting
Dark Current Tracker Program

Problem: Simulate dark current electrons generated at the walls of the beam chamber.

Challenges:
1. Define the beam chamber walls.
2. Be able to track particles that reversed direction longitudinally.

Solutions:
1. X-ray capillary wall code extended for simulating beam chamber walls.
2. Developed time based tracker module.

Result: A useful program was developed and Bmad gets extended capabilities which can then be used in other programs.
Tao: Tool for Accelerator Optics

Problem: Bmad is not a program so it cannot be used “out of the box.” for simple calculations.

Solution: Create Tao, a general purpose simulation & design program
 • Nonlinear last squares fitting.
 • Plotting.
 • Twiss and orbit calculations, etc.

Additionally: Tao’s object oriented coding makes it relatively easy to extend it.
 • For example: Can add custom commands to interface Tao with a control system.

Tao with Bmad gives the flexibility of a library with the convenience of a program.

JLab FEL Modeling
One area of current Bmad development is a unified ERL simulation framework.

Idea: To be able to simulate

- Electrons from the gun cathode to X-ray generation in wigglers and undulators through to the dump.
- X-rays from generation through to the experimental end stations.

Areas of development:

- Full description of the machine.
- Low energy tracking.
- X-ray generation.
- Tracking of X-rays.
Branching

For defining X-ray and beam dump lines: **Branch** and **photon_branch** elements which mark the beginning of a line

branch: photon_branch, superimpose, & ref = und1, to = tgmono
tgmono: line = (...) ! Define X-ray line

Branch lines can themselves branch.
=> One lattice can hold the “full” machine description.
Low Energy Simulations

Have developed new lattice elements to handle low energy tracking

• **e-gun** Gun cathode region element.
• **em_field** General field element.

Status:

• Coherent synchrotron radiation model implemented.
• Space Charge: Do not want to reinvent the wheel. Integration with existing SC codes ongoing:
 • Impact-T (Robert Ryne, Ji Qiang)
 • OPAL (Andreas Adelmann)
X-Ray Simulation

X-ray tracking elements developed:
- Crystal ! Bragg & Laue diffraction
- Capillary ! Focus X-rays
- Mirror
- Multilayer Mirror

Status:
- Bend and Wiggler X-ray generation implemented.
- Tracking needs more debugging.
- First “real world” simulations beginning.

Bragg crystal diffraction
The evolution of Bmad shows no sign of abating.

Short term:
- **Tighter integration with PTC**

```fortran
  type (lat_struct) lat
  call bmad_parser (file_name, lat)
  call lat_to_ptc_layout (lat)
```

Long term plans include:
- **Integration with the Shadow X-ray tracking code.**
- Partially coherent X-ray tracking.
- Undulator X-ray generation.
- Nonlinear controllers
- ???
Conclusion

• Bmad has been used successfully at Cornell for a number of years.

• With Bmad, Graduate students can do simulations that would be hard or impossible to do previously.

• Bmad is constantly evolving to meet changing needs.

• Collaborators welcome.

• Caveat: Learning to program with Bmad has a significant learning curve.