COMPREHENSIVE FILL PATTERN CONTROL ENGINE: KEY TO TOP-UP OPERATION QUALITY

Thomas Birke - Helmholtz-Zentrum Berlin für Materialien und Energie – ICALEPCS'15, Melbourne
Contents

- Bunch Fill Pattern at BESSY II – What is it, and why?
- Transition to Top-Up Operation – Implications
- Fill Pattern Control Engine – Structure, I/O, Error Handling, UI
What is the Bunch Fill Pattern at BESSY II?

- BESSY II provides specific support for time resolved experiments
- Pioneered low-α mode with coherent THz radiation and ps-pulses (2002)
- Most advanced fs-slicing endstation with 100ps pulses (2004)
- High current single bunch in ion-clearing gap
 - Pump/probe experiments (2004)
 - Singlebunch experiments at full or reduced intensity
 - Mechanical chopper (2013)
 - Pulse Picking by Resonant Excitation (PPRE, 2015)

Possible because any particular bunch may be filled and topped up to a configured intensity!
- **Top-Up**: Refill decaying beam and keep stored beam current at level while beamshutters are open
- Thermal equilibrium – stabilized machine
- Higher average and close to constant intensity in photons
 - Integrated Ah/week increased by ~30%
- All configured bunches have to be topped up with minimal variation to programmed intensities
Goal: No additional radiation in experimental hall
- Analysis of facility properties and malfunction scenarios
- Make sources of minimal damages measurable
 - Accurate efficiency and current measurements
- Guarantee minimized losses by setting up constraints
 - Interlocks block further injections on any violation

\Rightarrow Defined Constraints for Top-Up Operation:
- Injection efficiency $> 60\%$ for every shot (booster \rightarrow ring)
- 4h-average of injection efficiency $> 90\%$
- Max. injection frequency 0.1 Hz
- Min. current in booster for reliable efficiency-measurement
- Min. and max. current limit in ring with corresponding minimum lifetime („normal“ losses $< \sim 60$ mA / h):
 nom. 200-300 mA at $\tau > 5$ h (curr. 180-260 mA at $\tau > 4.4$ h)
Top-Up Efficiency Interlocks

- Two separate systems check all constraints
 - Currents, lifetime, efficiency
- Both have to approve top-up operation to continue
 - Violation inhibits further injections until conditions fixed
 - Injection free time or decay mode
 - Closing beamshutters may be necessary

Top-Up Interlock

- Extension of Personnel Safety Interlock (PSI)
- Ensures base injection trigger is at 0.1 Hz
- Together with PSI and efficiency interlocks
 → Grants or denies injection- and beamshutter-permission
Tasks of the Fill Pattern Control Engine:
- Manage the entire injection process to fill storage ring
- Fill it according to the configured bunch fill pattern
- Keep stored currents in any bunch as stable as possible with minimal variations
 - Currently max. \(~ 1.6 \text{ mA} / \text{ shot} \) resp. \(~ 0.3 \text{ mA} / \text{ bunch} / \text{ shot} \)
 \(\rightarrow\) variation \(< 0.5 \%\)
 - Injections every 10 s - 200 s average \(~ 120 \text{ s}\)
- Handle exceptions properly
 - Top-Up interlocks
 - Injector failures
 - Timing flaws
 - …

![Diagram showing injection process](image)
Consists of three parts

Finite State Machine controls injections
- 5 core states + ~10 transitional states

Fill Pattern Analysis
- Asynchronous on every fill pattern
- Determines next shot configuration

EPICS realtime database
- Configuration interface
- Reflects internal status of state machine and analysis
- PVs visible everywhere on the network: alarmhandler, archiver, information systems for users, web based status displays...
- Fill pattern control engine is a pure software device
- State and processed data of top-up interlock systems
- Fill pattern measurement system
 - PXI based fast ADC and stripline
 - Down to 100 nA per bunch current resolution
 - Averaged data provided at 1 Hz by LabVIEW application
- Global overall beamcurrent and lifetime measurement
- State of extraction- and injection-elements as well as the overall injector status from linac to booster synchrotron
Injection Setup
- Linac setup (number and interval of pulses)
 - 1-5 pulses at typical interval of 12 ns
 (12 ns = resolution of slicing laser timing)
- Suspend/resume injector
- Pulsed elements for extraction & injection
- Global timing for shot-positioning
- Global trigger enable/disable

Reliable Countdown
- Sensitive experiments need reliable prediction of duration of decay phases between injections
- Calculated after injection shot based on actual stored current, average lifetime and configured target current
- *Promise to users:* No injections before countdown expires
User Input:

- Total target current
- Shape of bunch train from linac
- 4 groups of bunches:
 - Multibunch fill
 - gap length and position
 - Camshaft bunch
 - current
 - Slicing bunches
 - number, position, interval and current
 - PPRE bunch
 - position and current
Fill Pattern Control: Error Handling

- **Top-up interlock**
 - May pause or terminate to-up operation due to violation of radiation safety constraints

- **Injector problems/failure**
 - Detected by monitoring linac status and
 - Current accelerated in booster synchrotron

- **Positioning mismatch**
 - No exact positioning possible – fallback to round-robin

- **\(I^2 \)-limit exceeded**
 - Impedance induced power deposit in components scales with sum of squares of bunch currents.
 - Software "interlock" to protect sensitive hardware

- **Persistent efficiency problems** during beamscrubbing
 - Top-up inactive, so software has to prevent damages
Top-Up Service and Fill Pattern Control Panel

Overall Status

- Fill Pattern Control: User Interface
- Comprehensive Fill Pattern Control Engine: Key to Top-Up Operation Quality – T. Birke – ICALEPCS’15 – Melbourne

Fill Pattern Setup

Multibunch Fill Setup

Informational Area

Bunch Fill Pattern Display

- Fill Pattern Parameters
- Event/Message Log
- Misc. Systems

Overlay of planned and live Fill Pattern, last Shot and Knockout region

- Number of Slicing Bunches: 3
- Gap between Slicing Bunches: 6 gon
- Gap between SL and Camshaft Bunches: 198 gon
- Current in Slicing Bunches: 4.0 mA
- Current in Camshaft Bunch: 4.0 mA

Status

- MB curr.: 255.0 mA, curvature: 6 gon
- Camshaft curr.: 4.0 mA, curvature: 198 gon
- Average SL curr.: 3.88 mA, curvature: 281 gon
- PPRL curr.: 3.18 mA, curvature: 248 gon

- Summary/Squares / test: 261 mA\(^2\)
- Average bunch curr. / test: 4.035 mA\(^2\)
- Eta: 0.83 mA

- Shift MB Fill by: -50 gon
- Shot Position Set mode: planned
- Trigger Set: automatic

- Boiler 300W: OFF
- Iq Trigger: OFF
- Gun Patc: Mode: On

- Black Box Test: 0.58
- SNB Pos: 2017 setting: 288
Extend possibilities of fillpattern definition
- Overcome limitations of fillpattern configuration
- Define arbitrary number of separate bunch groups
 - Range of bunches to fill: startpos:endpos:stepwidth
 - Current per bunch
 - Priority of group
 - Scalability of current to match overall total current
- Enables even more special fillpatterns
 - BESSY-VSR studies
 - Lowest-current bunches (down to 5 µA)

Overhaul of User Interface
Conclusion

- The standard tool to fill machine in any operational mode
 - Top-Up operation (Multibunch-Hybrid and Single Bunch)
 - Commissioning & machine studies
 - Low-α (decaying beam, 1-2 injections per day)
- Automation of injection procedure to maximum degree
- Working horse since day one of Top-Up Operation
- Provides exactly the programmed bunch fill pattern (even with on-the-fly changes) with smallest possible variations.