Motivation

ELI-ALPS is one of the three pillars of the European Extreme Light Infrastructure project. As a research facility, the infrastructure will contain a large number of experimental devices and equipment which have to be managed and controlled by a robust and flexible system. The Control System of ELI-ALPS will be based on TANGO.

Requirements

Scientific Systems
- Laser Sources will be delivered as black-box turn-key systems with the Gateway
- Secondary Sources: The requirements, the technical design, the hardware shopping list are provided by expert institutes
- Beam Transport: The requirements, the technical design, the hardware shopping list are provided by in-house experts
- The control systems and the integration of these will be delivered by dedicated project(s)

Central Control System
- Basic central services: archiving, alarms, logging, overview GUIs
- Integration platform orchestrates the collaboration of the systems through the gateways. The gateways are accessible only from the central system; the systems can communicate through a proxy. Systems can be pre-allocated.

Data Acquisition
- Software framework acquiring, data processing, and augmenting experimental data with metadata from all of the experiments and secondary sources
- Use the common facility level timing for both triggering and timestamping
- An experiment consists a series of batches, each batch will have a unique ID

Prototypes

Two types of PoC prototypes were developed: vertical prototype works with real hardware on a small setup, while horizontal prototype works with simplified hardware simulation of all laser and secondary sources (~700 simulated devices).

Vertical prototype

A really simplified optical system has been assembled (on the left). In the software logic layer there were two loops for stabilizing the manually pre-aligned beam. The GUI (on the right) displays these loops and also gives action buttons to the users.

Simulation framework

The horizontal prototype was not enough generic and reusable directly for development and testing, therefore a simulation framework PoC prototype is elaborated. The framework is demonstrated with a simplified scenario.

Acknowledgement

The ELI-ALPS project (EOP-2.1.1-12/B-2012-000, GINOP-2.3.6-15-2015-00003) is supported by the European Union and co-financed by the European Regional Development Fund.

Contact: sandor.brockhauser@eli-alps.hu