ELI-ALPS CONTROL SYSTEM STATUS REPORT *

Lajos Jenő Fülöp, Sándor Brockhauser, Sándor Farkas, Veronika Hanyecz, Miklós Kiss, Miklós Tamás Koncz, Árpád Mohácsi, Kwinten Nelissen, Lajos Schreitner, Balázs Szalai, Péter Szász, Chris Turner, ELI-ALPS, Szeged, Hungary

Abstract

ELI-ALPS will provide a wide range of attosecond pulses which will be used for performing chemical, biological, physical or medical experiments by international research groups. It is one pillar of the first international laser facility for the scientific user communities. ELI-ALPS use the TANGO Controls framework to build up the central control system and to integrate the autonomous subsystems regarding monitoring and control. It will also be used for the implementation of some autonomous systems’ control system while others will be implemented differently. The central control system and the integration strategy of the autonomous systems is designed. The centralization and integration needs are surveyed and the requirements are collected. Prototypes have been developed to clarify the requirements and to test the designs. Requirements elicitation, designing and prototype development follows a Lean-Agile approach and includes several fields: device drivers and simulators; integration logic; central supervision, archiving, logging and error recovery; graphical user interfaces and so on.

INTRODUCTION

ELI-ALPS is one of the three pillars of the European Extreme Light Infrastructure project. The Attosecond Light Pulse Source (ALPS) facility will provide a wide range of ultrafast light sources (such as coherent XUV and X-ray attosecond pulses) for performing material, condensed matter, surface science, chemical, biological, physical or medical experiments. Besides, the development of the technology for generating 200PW peak intensity pulses is also a main mission. As a research facility, the infrastructure will contain a large number of experimental devices and equipment which have to be managed and controlled by a robust and flexible system.

In the first phase of the development of the ELI-ALPS Control System the fundamental concepts, the high-level architectural design and the frames of the development process have been identified. In this paper the most important requirements, concepts, aspects, and prototypes are summarized briefly.

REQUIREMENTS

The general requirements are to follow public standards [3] as well as in-house policies and handbooks that also declare the application of frameworks such as TANGO and Taurus [4]. In order to maximize efficiency, different techniques are planned to be used. Automation techniques will be applied as much as possible, e.g. automatically registering devices [5], generate and configure GUIs and so on. Simulation environments, mimicking the devices and some key relationships will allow to perform most of the software development and testing independently from the real hardware.

Scientific Systems

Laser sources will be delivered as black-box, turn-key systems together with hardware and software. The secondary source systems are addressed by dedicated projects. The requirements, the technical design, as well as the hardware shopping list are provided by expert institutes of the corresponding secondary source field. The beam transport systems are addressed by a dedicated in-house project, which provides the requirements, the technical design and the hardware. Software and integration will be covered by another dedicated project.

Central Control System

The Central Control System will include the following services. The archiving subsystem collects all the preconfigured local or central variables for later usage and trends. The alarms subsystem collects and shows all the local and central alarms that are the result of evaluating predefined formulas on attribute values. The logging subsystem collects all the logs.

The Integration Platform supports, manages and orchestrates the collaboration of the systems (lasers, secondary sources, beam transport, etc.). Each system provides a gateway for communication. The gateways should be accessible only from the central system. For the other systems the central control system defines a uniform interface in order to provide controlled access to the gateways of a connecting system. A locking mechanism of the central system is responsible for system (proxy/gateway) allocation (i.e. granting exclusive access, when a system can be allocated to only one other system at a time). Moreover, it is preconfigured which systems may allocate a certain system for monitoring and control purposes.
The Overview GUI provides a general overview, monitoring all the systems. This GUI can be (semi-)generated based on the Gateways.

Data Acquisition

The data acquisition system will provide a framework for acquiring and processing experimental data originating from all of the experiments, as well as augmenting the data with metadata. Secondary sources and experiments should apply and adopt this framework. Data acquisition will use the common facility level timestamps for both triggering the experiments and timestamping the acquired data (the timing system is to be delivered by an external provider). Already existing solutions and results will be considered [6]. The experiment execution framework should have data processing capabilities at different granularities.

Each experiment will have a unique ID. An experiment consists of a series of **batches**, each batch has a unique batch ID. During a batch, low level data acquisition takes place that may involve low level reduction/compression and pre-processing done in the low level device and electronic logics layers (e.g. by FPGAs).

After the completion of a batch, **higher level post-processing** can take place, maybe invoking scientific algorithms run on local machines or on a cluster accessible on the network (HPC services). The results of post-processing can influence the execution of the next or subsequent batches, this provides a feedback mechanism during experimentation (online data processing).

SYSTEM DESIGN

The following system design concepts have been identified based on the requirements and constraints given above.

Systems and Subsystems

Briefly, a subsystem incorporates the devices and electronic components (represented by rectangles at the bottom of Figure 1), as well as the subsystem specific software layers: device servers are implemented for physical devices on multiple levels (low level, compound, software logics). These are represented by ellipses in the Figure.

The higher level compound device servers implement gradually higher level functions. These device server components are organized in a layered structure, each layer providing services to the layer(s) above and using services of the layer(s) below.

Systems are composed by combining subsystems. These can be organized into different levels, indicated by boxes in Figure 1. The level name (e.g. Beam Transport Level) is indicated in the top-left corner, while the actual instances (the corresponding systems) are indicated on the right side of the box (e.g. BT-SYLOS): 4 laser sources, 4 beam transport lines and 11 secondary sources are listed.

The Scientific Systems include three levels: the **lasers** will be delivered by external suppliers as turn-key solutions; the **beam transport** systems use the services of beam transport-specific subsystems and the corresponding laser system; the **secondary source** systems use the services of subsystems located in a designated area, and the beam transport system (as well as the central system).

The Infrastructure systems (built on top of localised subsystems) are provided either internally (in this case subsystem device servers are white-box and accessible) or externally (in this case subsystem device servers are black-box and not directly accessible). The various systems comprise an architecture built on top of the TANGO bus. The design makes it possible to control devices located in a designated area of interest (e.g. secondary source room, beam transport area), and also to
control, monitor and manage all the devices of the systems supporting the same functionality (e.g. vacuum, power supply, computer and network monitoring, etc.)

Layers
Each system (and its subsystems) has some layers and each layer has to address hardware and software aspects (see Figure 2). The layers from bottom to top are the following.

Control System Electronics. The Devices layer includes the elementary building blocks; it is an electronically controllable device, e.g. a detector or a motor. The Electronic logics layer controls the device and provides fast logics through an electronic controller, e.g. a relay or a PLC. The Software drivers layer connects the electronic and software worlds: a device or controller can be connected to a local or remote computer controlled by operating system or other drivers (e.g. LIMA, etc.).

Control System Software. The Device Servers layer makes the software devices available on the TANGO network and hides all the underlying layers. One computer can host several device servers on the local network, and one device server can provide access to several devices. The Software Logic layers provide functionalities on sets of related devices on subsystem and system levels, respectively. These are also implemented as TANGO device servers and are hosted on one or more computers. The GUI (Graphical User Interface) layer gives interactive access to the software logics and to the devices for the operators and users. TANGO provides generic GUI clients as well as toolkits to create custom ones. The Gateway layer is the access point towards the central control system. It is implemented also as TANGO device server(s).

It is important to protect the different systems from each other in order to avoid unintentional interactions. A particular system should have its dedicated (virtual) computers, terminals and (Virtual) Local Area Networks; as well as it should have a dedicated TANGO database/bus. Similarly to the systems, the central control system will have its own (V)LAN and TANGO database/bus.

The layer concept can be applied only to the Beam Transport, Secondary Source and Internal Infrastructure systems (those that are not delivered by external suppliers as black-box systems).

PROTOTYPES
Two types of prototypes have been developed in order to validate the design concepts. A vertical prototype includes all layers of a small demonstrational system with physical devices. A horizontal prototype includes the software layers of almost all systems (laser sources, beam transport lines, secondary sources) with software simulated devices.

Vertical Prototype
A simplified optical system was assembled and gave the basis of a vertical prototype (see Figure 3). It was suitable to build up a prototype with TANGO. In the software logic layer there were two loops for stabilizing the manually pre-aligned beam. The GUI (Figure 4) displays these loops and also gives action buttons to the users.
Horizontal Prototype

This prototype includes a skeleton of the four laser sources and the ten secondary sources: the prototype is based altogether on 700 simulated devices. The prototype provides GUIs for each system, and a central one. The simulation was implemented on the *device servers* layer. This prototype was not generic enough and reusable directly for development and testing, therefore a simulation framework has been elaborated.

Simulation Framework

Building on the experiences gained from the constructed vertical and horizontal prototypes, a framework has been designed that aims to cover as many aspects of the ELI-ALPS control system development as possible.

CONCLUSIONS

The conceptual system design has been defined according to the requirements. Different kind of prototypes have been developed in order to check the completely be described by a configuration file. This separation provides many advantages because most of the development can be done without the target hardware environment: unit testing, functional and integration testing, deployment test, prototyping, operator training etc. It is important to note that the simulation environment is not expected and does not have to exhibit the same real-time behaviour as the target environment in order to be useful. In fact, different simulation levels can be defined ranging from the provision of the expected interface to gradually higher degrees of realism.
design. There is a lot of work in the future because the requirements of the scientific systems will be continuously changing and evolving in addition to new ones arriving.

REFERENCES

