High Speed Detectors: Problems and Solutions?

Nick Rees, Mark Basham, Frederik Ferner, Ulrik Pedersen, Tobias Richter, Jonathan Thompson (Diamond Light Source, Oxfordshire)
History

• Early 2007:
 – Diamond first user.
 – No detector faster than ~10 MB/sec.

• Early 2009:
 – first Lustre system (DDN S2A9900)
 – first Pilatus 6M system @ 60 MB/s.

• Early 2011:
 – second Lustre system (DDN SFA10K)
 – first 25Hz Pilatus 6M system @150 MB/s.

• Early 2013:
 – first GPFS system (DDN SFA12K)
 – First 100 Hz Pilatus 6M system @ 600 MB/sec
 – ~10 beamlines with 10 GbE detectors (mainly Pilatus and PCO Edge).

• Early 2015:
 – delivery of Percival detector (6000 MB/sec).
History

- **Early 2007:**
 - Diamond first user.
 - No detector faster than ~10 MB/sec.
- **Early 2009:**
 - first Lustre system (DDN S2A9900)
 - first Pilatus 6M system @ 60 MB/s.
- **Early 2011:**
 - second Lustre system (DDN SFA10K)
 - first 25Hz Pilatus 6M system @150 MB/s.
- **Early 2013:**
 - first GPFS system (DDN SFA12K)
 - First 100 Hz Pilatus 6M system @ 600 MB/sec
 - ~10 beamlines with 10 GbE detectors (mainly Pilatus and PCO Edge).
- **Early 2015:**
 - delivery of Percival detector (6000 MB/sec).
• Early 2007:
 – Diamond first user.
 – No detector faster than ~10 MB/sec.
• Early 2009:
 – first Lustre system (DDN S2A9900)
 – first Pilatus 6M system @ 60 MB/s.
• Early 2011:
 – second Lustre system (DDN SFA10K)
 – first 25Hz Pilatus 6M system @150 MB/s.
• Early 2013:
 – first GPFS system (DDN SFA12K)
 – First 100 Hz Pilatus 6M system @ 600 MB/sec
 – ~10 beamlines with 10 GbE detectors (mainly Pilatus and PCO Edge).
• Early 2015:
 – delivery of Percival detector (6000 MB/sec).
Why move to GPFS? – 20 GbE nodes
Why move to GPFS? – 20 GbE nodes

![Bar chart showing performance comparison between Lustre and GPFS for different configurations: 1 node, 1 process, 1 file; 1 node, 2 processes, 1 file; 1 node, many processes, many files; 2 nodes, 2 processes, 2 files.]
Why move to GPFS? – 20 GbE nodes

- 1 node, 1 process, 1 file
- 1 node, 2 processes, 1 file
- 1 node, many processes, many files
- 2 nodes, 2 processes, 2 files

20 GbE

Lustre

GPFS

-diamond-
Why move to GPFS? – 20 GbE nodes

- 20 GbE
- 40 GbE

1 node, 1 process, 1 file
1 node, 2 processes, 1 file
1 node, many processes, many files
2 nodes, 2 processes, 2 files
Why move to GPFS? – 20 GbE nodes
Basic Parallel Detector Design

Sensor/Medipix3 Hybrids

Detector head

FEM

Readout Node

Master Node

Network

Optical Links

10GigE
What we want – GbE nodes writing to disk

![Graph showing data rate (MB/sec)]
What we want – GbE nodes writing to disk

With 1 GbE links life is simple!
The problem – 10 GbE nodes writing to disk

![Graph showing data rates for GPFS and Lustre over time](image-url)
The problem – 10 GbE nodes writing to disk

- With 10 GbE links life is more complex!
- pHDF5 cannot deliver the aggregate performance of multiple independent HDF5 jobs.
Another problem – Speeds and B-trees
Another problem – Speeds and B-trees

- pHDF5 performance can vary unexpectedly
- B-tree expansion can slow writing (v1.10 has extensible arrays for data which is unlimited in only one dimension)
HDF5 Summary
HDF5 Summary

- HDF5 is mature software that grew up in the HPC environment.
- It is a widely used standard and has the richest set of high performance functionality of any file format.
- It has some caveats we knew about:
 - HDF5 is single threaded.
 - pHDF5 relies on MPI, which doesn’t happily co-exist with highly threaded architectures like EPICS.
- It has some caveats we didn’t know about:
 - There are also problems with pHDF at 10 GbE speed.
 - B-Tree expansion can cause long delays
Solution: Single Writer Multiple Reader

- High speed detectors write large files to avoid the overhead of lots of small files.
- However, this means that data processing can’t start until a large amount of data has been generated.
- Single Writer Multiple Reader (SWMR) addresses this with extensions to the HDF5 file format to allow readers to have a coherent view of the file even as it is updated.
- Still requires some funds to finalise (~300k funded out of ~400k).
Solution: Virtual Dataset Concept

- Parent dataset in VDS.h5 composed of data mapped from datasets in 5 subordinate files.
- Subordinate datasets can be
 - Written independently and in parallel.
 - Compressed and chunked independently
- Parent dataset can be read as normal.
- Eliminates need for pHDF5
Summary

• HDF5 is the most fully featured high-performance file format there is.
 – But it still has issues
• GPFS has much better single process throughput than Lustre
 – But is still is slower or no faster at times.
• We are working with The HDF Group to enhance HDF5 for these applications.
 – But we would like some community help.