Testing & Verification of PLC Code for Process Control

B. Fernández, E. Blanco, A. Merezhin, CERN, Geneva, Switzerland

ABSTRACT

Functional testing of PLC programs has been historically a challenging task for control systems engineers. This paper presents the analysis of different mechanisms for testing PLC programs developed within the UNICOS (Unified Industrial Control System) framework. The framework holds a library of objects, which are represented as Function Blocks in the PLC application. When a new object is added to the library or a correction of an existing one is required, exhaustive validation of the PLC code is needed. Testing and formal verification are two distinct approaches selected for eliminating failures of UNICOS objects. The advantages and limitations of both approaches are presented and illustrated with a case study, validating a specific UNICOS object.

UNICOS generalities
- Framework based on objects.
- Control engineers build a model of the process units using UNICOS objects.
- Objects represented at the SCADA and Control layer.

UNICOS objects

UNICOS object Design
- UNICOS object in WinCC OA
- ST PLC code

UNICOS Library

Testing
- Applied to a real system.
- Based on a test catalog.
- Manual testing can be replaced by automatic testing.
- Automatic testing with WinCC OA Control language scripts:
 - Send orders to PLC.
 - Compare retrieved result in WinCC OA.
 - Report results.

Goal
- Analyse different approaches to test and verify UNICOS PLC objects

Formal Verification
- Concepts
 - Model Checking uses semi-algorithms to check that a global model (representing the whole system) meets the requirements.
 - System Model: Petri Nets, Timed Automata, Hybrid Automata, etc.
 - Formal Properties: Temporal Logic

Analysis & Conclusions

Pros
- Automatic Testing: Testing the real system
 - Technology is available
 - Reduce human errors
 - Reusable for different PLC
- Model Checking: Explores all the combinations
 - Earlier bug detection
 - Avoid human errors
 - Complexity hidden by the generation tools
 - Counter-examples to find the source problem

Cons
- Sophisticated maintenance
 - High price for new test case
 - Black box testing
 - Difficult to find the source of the problem
- Verification of a system model
 - Need of automatic generation tools
 - Need to prove the transformations
 - State space explosion
 - Applying abstraction techniques is not trivial

PLC software development lacks of modern software engineering best practices such as unit test or daily builds.
Testing and formal verification are complementary not exclusive.
Both formal verification and automatic testing can be integrated in the development process of PLC code in order to detect and correct bugs before the deployment.

bfernand@cern.ch