Quantitative fault tree analysis of the beam permit system elements of RHIC at BNL

Prachi Chininis1, Kevin A. Brown2, Thomas G. Robertazzi3 and Charles Theisen4
1Stony Brook University, NY, 2Brookhaven National Laboratory, NY

Objective
To find hazard rates for adverse failures occurring in beam permit system modules

Introduction
- Beam permit system is a centralized safety system that ensures the equipment and personnel safety at all the times
- This work calculates the failure rate of adverse failures occurring in BPS modules
- Also provides a quantitative comparison of basic component failure rates and identifies the failure-prone components

BPS modules
- BPS consists of 37 modules that can be put in two major categories: Permit Modules (PM) and Abort Kicker Modules (AKM)
- PM concentrates the health inputs from RHIC support systems and takes decision regarding system safety
- AKM upon seeing a failure, waits for the beam abort gap and sends dump signals to kicker magnets to dump the beams

Fault tree analysis

Quantitative FTA
- Fault Tree Analysis (FTA) is a deductive approach that translates a physical system into a structured logic diagram and resolves an undesired event into its causes.
- The exponential distribution is used to model the lifetime of electronic components, and has a reliability function equal to:

\[S(t) = e^{-\lambda t} \]

Below is a Fault Tree with a higher level event E resolved into n basic events, which are independent and exponentially distributed.

Represented as a series system, the reliability function of E:

\[S_E(t) = S_1(t)S_2(t)\ldots S_n(t) = \prod_{i=1}^{n} S_i(t) = \prod_{i=1}^{n} e^{-\lambda_i t} = e^{-\sum_{i=1}^{n} \lambda_i t} \]

The failure rate function of E:

\[\lambda_E(t) = \sum_{i=1}^{n} \lambda_i \]

No redundant components in system makes all the top level failure rates for modules as exponential.

The analysis (continued)
- Levels of hierarchy in tree represent stages of detail
- Number of levels depends on the constituents boards' complexity.
- At board level, the circuit is divided into signal paths relating inputs and outputs of a top level failure
- Failure rates are divided for common paths of failures

Component failure rate prediction: The exponential failure rates are obtained from manufacturer for newer components and from MIL-HDBK-217F for older components. Environmental factor of \(\lambda_b \), ambient temperature of 30°C and a 60% confidence interval is used.

Component failure mode prediction: The failure rate is further divided into failure mode rates through apportionments given by FMD-97™. The normalized distribution data is used, which excludes non-inherent failures.

Component contribution: A component common to all the signal paths will cause an FO in PM:SQ and FB in PM:SNQ. Component is ignored if: active at initialization or beam-abort, diagnostics, having zero failure rate, inactive in a variant. Failure mode is ignored if unknown consequence, early life failure mode or parametric failure.

Results

Top failure modes of PM:M and PM:SQ

Top failure modes of PM:SNQ and PM:S

Top failure modes of AKM

Discussion
PM-M (07) and PM-SQ
- \(\lambda_{SQ} \) and \(\lambda_{SNQ} \) are largely contributed by the fiber optic elements having failure rates of the order of 10^{-4} FIT.
- \(\lambda_{SQ} \) is highest: having optical elements for both blue and yellow link
- \(\lambda_{SNQ} \) is almost half of \(\lambda_{SQ} \): having optical elements for permit link only
- \(\lambda_{PM} \) for PM-M is very low: absence of optical elements
- \(\lambda_{PM} \) is an order less than other two, contributed by the optocoupler malfunction in V120 board

PM:SNQ and PM:S (24)
- No FO mode: no quench inputs or blue/yellow carriers
- \(\lambda_{SNQ} \) is higher than PM:SQ: fault in common circuits causes an FB rather than an FO
- \(\lambda_{PM} \) is slightly lower than PM:SQ: no quench inputs and corresponding elements

AKM
- \(\lambda_{PM} \) is very small for all modules except the 33rd: optical elements
- \(\lambda_{PM} \) is almost equal to PM: largely contributed by oscillator malfunction and power failures on board
- \(\lambda_{PM} \), \(\lambda_{FB} \) largely contributed by oscillator malfunction and power failures on board

Conclusion
The MIL-HDBK-217F is fairly conservative in its approach which is suitable for safety analysis of components that are not supplied with data from manufacturer. The maximum values of \(\lambda_{FB}, \lambda_{DD}, \lambda_{B} \) and \(\lambda_{Q} \) are 1987, 3332, 290 and 195 FIT. The corresponding MTTFs are 57, 34, 393 and 585 years. Due to multiple modules and their interaction dynamics, a system failure can occur in RHIC operational life of 20 years. This evaluation is done through a Monte Carlo simulation of the BPS.

Acknowledgement
The authors would like to thank R. Schoenfeld and W. Jappe for doing rigorous tests to find the operating parameters of components on various boards.

References
4. FMDC-97, Failure Mode/ Mechanism Distribution, 1997, Reliability Analysis Center, Rome, NY
5. P. Chininis et al., MOPPC075, these proceedings

Footnotes
- Work supported by Brookhaven Science Associates, LLC, under Contract Number DE-AC02-98CH10886 with the US Department of Energy
- Contact info: prachi.chininis@stonybrook.edu