Status of the Intra-bunch Feedback at J-PARC Main Ring

Takeshi Toyama
KEK / J-PARC

IBIC2015, Sep 12-17 2015, Melbourne Australia
Collaborators

Keigo Nakamura
Kyoto University

Makoto Tobiyama, Masashi Okada,
Yong Ho Chin, Takashi Obina, Tadashi Koseki
KEK

Yoshihiro Shobuda
JAEA
Japan Proton Accelerator Research Complex

Tokai, Ibaraki

LINAC 40mA (50mA)
3 GeV RCS 500 kW ← operation
30 GeV MR 350kW (750kW) ← one shot
ν detector
MLF

295 km Kamioka → operation ← one shot
350 kW (750 kW) ← goal

Kamioka
Outline

• Introduction
 – Upgrade history of the J-PARC MR transverse feedback

• Feedback during acceleration
 – Timing slip
 – Timing matching
 – Initial result

• Summary and prospect
J-PARC MR parameters

- Circumference: 1567.5 m
- Injection Energy: 3 GeV
- Extraction Energy: 30 GeV
- Revolution at injection: 5.384us (185.7kHz) RF 1.67MHz
 at extraction: 5.231us (191.2kHz) RF 1.72MHz
- Harmonic number: 9
- Repetition time for fast extraction: 2.5 s

At high beam power
- Collective motion causes beam losses, other than non-linear resonances (due to space charge).
Two obstacles

(1) Injection error & succeeding collective motion

\(N_B \sim 1.67 \times 10^{13} \) ppp
2 bunches
\(\xi_x \sim -7.5 \)
\(\xi_y \sim -7.0 \)

circulating beam is kicked by kicker pulse-tail & reflection

Injection from the RCS:

K1

K2

Front bunch
Rear bunch

Intensity
Bunch area, average of 10 turno
(2) Instability during acceleration

Instabilities have been observed at the beam power 230kW, with chromaticity $\xi_y=-0.3$. We avoid this instability by tuning chromaticity $\xi_y=-3.2$.

Observed bunch motion

Vertical betatron oscillation amplitude

Keigo Nakamura, et al., IPAC2014, Dresden, Germany
B x B feedback

Bunch-by-bunch (BxB) feedback
slice ~ 590 ns

Kick

Beam bunch
Intra-bunch feedback slice ~ 10 nsec

Intra-bunch feedback

Kick

Beam bunch

FIR filter in iGp12
Schematic view

For the horizontal (x) plane

Beam

X+

50Ω

Stripline BPM

Stripline kicker

Hybrid

100KHz-200MHz

X-

50Ω

ADC+

ADC-

iGp12

DAC-

DAC+

x2

Power Amp.

100KHz-100MHz

RF clock

x64

clock

revolution clk

DC offset

Attenuator

Same as the vertical (y) plane
For the horizontal (x) plane

Beam

Hybrid
100KHz-200MHz

Stripline BPM
50Ω

Stripline kicker
50Ω

oscilloscope

iGp12

ADC+

ADC-

DAC+

DAC-

x2

Power Amp.
100KHz-100MHz

Attenuator

RF clock

x64

rev. for timing clk

trig. for timing table

DC offset

clock

revolution

Same as the vertical (y) plane
iGp12 for y

Trigger for timing table

iGp12 for x
3 GeV injection flat bottom

Oscillation of one bunch slice

Without FB

Bunch signal every 5 turns

Without FB

BxB FB on

+ intra-bunch FB on

+ intra-B on
Timing slip

Parameters are changing during acceleration upto 30 GeV

Beam transit time $\Delta \phi_B(t)$

Acc. RF cavity

$\phi_{syn}(t)$ synchronous phase

RF AMP

RF CNTL

BPM

Tr. kicker

RF AMP

iGp12

Observing the beam and the RF kick simultaneously

length: l

$f_{RF}(t)$

Oscillator

Parameters are changing during acceleration upto 30 GeV
Example of revolution frequency

\[f_{\text{rev}} = 185.7\text{kHz} \rightarrow 191.2\text{kHz} \]
Example of synchronous phase

Subject to change depending on the beam tuning

We need rapid parameter optimization
Sampled by iGp12 \[\leftarrow \text{Compare} \rightarrow \text{signals on the stripline kicker}\]

\[\Delta \phi_B(t) \text{ beam transit time}\]

Stripline kicker = directional coupler
- can observe
- beam signal
- RF power from the feedback system

\[\Sigma \text{–signal of stripline kicker}\]

Sampled signal @iGp12

\[\text{marker @slice#570}\]

\[\text{marker @slice#5}\]
Unit in oscilloscope (kicker) = \textbf{time (sec)}

Referencing the marker #5, 570 scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = \textbf{time (sec)}

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = time (sec)

Referencing the marker #5, 570 scaling and shift

Unit in iGp12 RF CLK x 64
Unit in oscilloscope (kicker) = \textbf{time (sec)}

Referencing the marker #5, 570 scaling and shift

Unit in iGp12
RF CLK x 64
Unit in oscilloscope (kicker) = \textbf{time (sec)}

Referencing the marker #5, 570 scaling and shift

Finally superpose the beam signal by shifting horizontally the \textbf{amount of shift = the delay time that we want}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{Acceleration}
\end{figure}
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

Time from P1 (sec)
Timing CNTL by preset table

External trigger initiates each "STATE"
STATE specifies the delay, filter gain, phase, # of tap

a function of "iGp12"
Timing CNTL by preset table

2.48 sec cycle

| STATE | 1 | 2 | 3 | 4 | 5 | |

Graph showing kinetic energy versus time from P1 (sec):
- Top graph: Kinetic energy in GeV.
- Bottom graph: Frequency (f rev) versus time from P1 (sec).

Graphs illustrate changes in energy and frequency over time.
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

f_{rev}

Time from P1 (sec)
Timing CNTL by preset table

STATE 1 2 3 4 5

Graph showing kinetic energy and frequency over time.
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

f rev

Time from P1 (sec)
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

Time from P1 (sec)

f_{rev}
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5
Timing CNTL by preset table

2.48 sec cycle

Kinetic Energy [GeV]

STATE 1 2 3 4 5

\[\text{Time from P1 (sec)} \]

\[\text{f rev} \]
iGp12 parameter settings

Injection flat bottom

FIR filter parameters

This trial

Acceleration

This trial
2015. 7. 1
2 bunches, ~80kW, ~4.2×10^{13} \text{ p}

BEFORE

shot513300

\xi_x \sim -5.9
\xi_y \sim -5.2

Acceleration

\Delta x
\Delta y

P1+100ms P2
2015. 7. 1
2 bunches, ~80kW, ~4.2x10^{13} p

BEFORE

shot513300

\(\xi_x \sim -5.9 \)
\(\xi_y \sim -5.2 \)

AFTER

shot513301

Stabilized only by switching on STATE 2
Summary

✓ Transverse intra-bunch feedback during acceleration period was successful upto P2 + ~80 ms.
 • Horizontal instability at the beginning of acceleration was suppressed.
 • Stable parameters (delay, gain, frequency) are obtained

Prospect

➢ Further parameter optimization for further accel. period
➢ Stability check both with experiments and simulations
➢ Contribute high beam intensity upgrade