Heavy Ion Laboratory, University Of Warsaw
– A Unique Research Center In Poland

Jaroslaw Choinski
Przemysław Gmaj

13th International Conference on Heavy Ion Accelerator Technology
RIKEN Nishina Center, Yokohama, Japan, September 7-11, 2015
Science Campus Ochota
Fundamental research in nuclear physics

Medical applications
about 3300 h/year
about 100 users/year
about 3300 h/year
about 100 users/year
Cyclotron U-200P and ion sources

Isochronous, 4 sectors, $K_{\text{max}} = 160$
E from 2 MeV/A to 10 MeV/A
Beams 2-250 pnA
In use from 1994

Present ECR ion source
ECR - Home made, ions He-Ar

ECR – ”Supernanogun” Pantechnik,
ions up to Xe
Fundamental research

- Coulomb excitations
- Life time measurements
- K-isomers
- Coulomb barrier distributions
- Transfer reactions
- Time reversal spontaneous symmetry breaking (chirality)
- Electron conversion spectroscopy
- Atomic clusters, nanodosimetry
- Exotic alpha-emitters
- Biology - surviving of irradiedated cells
- New radiopharmaceuticals
EAGLE
Central European Array for Gamma Levels Evaluation

- multi-detector gamma-ray spectrometer
- up to 30 HPGe detectors with ACS
- many ancillary detectors
- can employ Phase-I EUROBALL detectors from Gammapool

J. Mierzejewski et al., NIM A659 (2011)84
4π Si-Ball
(by A. Kordyasz, HIL, Warsaw)

„The Munich chamber”
48 PiN diodes (max. 110)

ULESE
(University of Łódź electron spectrometer)

Bucharest plunger
collaboration with IFIN-HH
Main research domain: nuclear structure studies with the use of \(\gamma\)-spectroscopy:

- \(\gamma-\gamma\) angular correlations with **EAGLE** HPGe array;
- e-\(\gamma\) spectroscopy with **ULESE** spectrometer;
- **DSAM** (Doppler Shift Attenuation Method) and **RDDS** (Recoil Distance Doppler Shift technique) lifetime measurements;
- complex **Coulomb excitation** experiments relevant for nuclear structure physics

Complementary to RIB experiments performed e.g. at ISOLDE in CERN

→ additional experimental data derived from independent experiments crucial when going towards more exotic nuclei with e.g. HIE-ISOLDE.
A small scattering chamber, equipped with an array of backward hemisphere semiconductor detectors (PiN diode type) and forward hemisphere monitoring Si counters.

Used for Coulomb excitation studies and measurements of fusion barrier height distributions.
Identificateur de Charges A Rendement Elevé

- Reaction chamber (Φ1.0x0.7m)
- 48 telescopes for charged particles detection & identification, energy measurements:
 - 8 tel.: ΔE(gas) + 500μ E(Si)
 - 24 tel.: 40μ ΔE(Si) + 2.5cm E(CsI)
 - 16 tel.: 40μ ΔE(Si) + 300μ ΔE(Si) + 2.5cm E(CsI)
• ICARE Particle Spectroscopy Chamber from IReS Strasbourg, France Form 2007 at HIL.

• Scientific program:
 - barrier distributions measurements
 - reaction mechanism studies
 - novel detector tests
On-line mass separator IGISOL

- Mass separation:
 - acceleration voltage 40KV
 - analyzing magnet 55 deg.
 - mass resolution 260-700

Detection setup:
- tape station
- advanced time delay system (β-γ-γ: Ge, Si(Li), BaF$_2$ detectors)
- miniorange spectrometer
Radioisotopes presently investigated

- ^{211}At with the reaction $^{209}\text{Bi}(\alpha, 2n)$;
- ^{43}Sc
- ^{44}Sc
- $^{72}\text{Se}/^{72}\text{As}$
- ^{99m}Tc
- $^{100}\text{Mo}(p, 2n)$.
Applications
Targeted Alpha Therapy (TAT)

- 211At produced using U-200P cyclotron, internal target station, 209Bi(He$^{+1}$,2n)211At reaction at 30MeV bombarding energy.

- The produced activity is transported to the Institute of Nuclear Chemistry and Technology, where the 211At is extracted from the Bi target and chemical research consisting of binding 211At to substance P, a peptide with high affinity to the receptors of glioma cancer cells are conducted.
Applications

$^{72}\text{Se}/^{72}\text{As}$ production

$^{72}\text{Se}/^{72}\text{As}$ radionuclide generator

- $^{72}\text{Se}/^{72}\text{As}$ EC/positron emitter generator for PET applications is one of many generators listed in the IAEA report (2010);

- ^{72}Se can be produced by the $(p,4\text{n})$ reaction or $(\alpha,2\text{n})$ reaction;

- The research on the properties of this generator are presently conducted by the Inst. of Nucl. Chemistry and Technology in collaboration with HIL team using the α-particle production route.
Expected applications of 3.9h Sc radioisotopes

- ^{43}Sc - longer than ^{18}F living PET radioisotope, with substantially increased uptake characteristics for some cancers, similar to much shorter living ^{68}Ga;

- ^{44}Sc - the favourite candidate for the three photons PET technics.

"The development of methods for production of new radiopharmaceuticals based on Sc radionuclides used in positron tomography (PET)" [PET-SKAND]

Agreement No PBS3/A9/28/2015

consortium of

the Institute of Nuclear Chemistry and Technology, the Polatom – National Centre for Nuclear Research and the University of Warsaw
Applications

Biology - survival of irradiated cells, X-Y scanner (moving target)

Target holder
Applications
X-Y scanner (moving target)

Experimental facility
Applications

Laboratory of Medical Imaging
Gamma camera DST-XL

- Research in medical applications of nuclear physics
- Student Laboratory (specialization – Medical Physics, bachelors studies from 2009/10 at Faculty of Physics)
Detector laboratory

4 inch, 7.3 μm Si strip detector

Head prof. A. Kordyasz
Target laboratory

polyimide \(\left(\text{C}_{22}\text{H}_{10}\text{N}_{2}\text{O}_{4} \right)^n \)

Perfect mechanical properties, high chemical resistance, low radiation damage

Head prof. Anna Stolarz
Radiopharmaceuticals Production and Research Center (RPRC) at Heavy Ion Laboratory University of Warsaw has been constructed.
The layout of the RPRC
Proton beam on target ≥ 80 μA
Deuteron beam on target ≥ 60 μA
The set of target systems at RPRC: F-18, C-11, O-15

- C-11 normal
- C-11 high pressure
- D-15

Exit to an external beam line
Currently the site for commercial activity is leased to ADVANCED ACCELERATOR APPLICATIONS POLSKA (AAA Polska)
„The development of an alternative method for 99mTc production”

Agreement No PBS1/A9/2/2012

consortium of

the Institute of Nuclear Chemistry and Technology
the Polatom – National Centre for Nuclear Research
the University of Warsaw

01.11.2012 – 31.10.2015
One of the outcome of this program is construction of an external solid state target station.
Teaching

- National and international workshops for undergrad. and graduate students
- Bachelor, Master and PhD students from Univ. of Warsaw, Warsaw Univ. of Technology, Silesian Univ., National Centre for Nuclear Research (~ 10/year)
HIL Team

Scientists – 13
PhD students – 7
Technicians – 35
Administration - 8
Summary

- the unique Polish nuclear physics center
- European Transnational Access Facility
- place for research, education and applications

- National nuclear physics laboratory open for external users
- Involved in teaching
- Developing medical applications
Thank you for your attention!