THE RARE-RI RING AT RIKEN RI BEAM FACTORY

Y. Yamaguchi*, Y. Abe and Rare-RI Ring Collaborators, RIKEN Nishina Center, Wako, Japan

Abstract

The Rare-RI Ring is an isochronous storage ring to measure masses of short-lived rare nuclei by using relative TOF measurement method. The expected precision of the measured mass is of the order of ppm.

We examined the basic performance of the devices, i.e. injection line, septum magnets, dipole magnets with trim-coils, and fast-kicker system by using α-source in 2014. We demonstrated that trim-coils, which are fixed on the dipole magnets of the ring, can adjust the isochronous condition of the ring. An α-particle was injected into the ring individually by using self-trigger mechanism and was extracted from the ring several turns after the injection.

In June 2015, a commissioning run using a 78Kr beam was performed and basic performances of the Rare-RI Ring were verified. We succeeded in injecting a particle, which was randomly produced from a DC beam using cyclotrons, into the ring individually with the fast-kicker system, and in extracting the particle from the ring less than 1 ms after the injection with same kicker system. We measured time-of-flight (TOF) of the 78Kr particles between the entrance and the exit of the ring to check the isochronism. Through the first-order adjustment with trim-coils, the isochronism on the 10-ppm order was achieved for the momentum spread of $\pm 0.2\%$. Higher-order adjustment employed in future will lead us to the isochronism on the order of ppm. In addition, we confirmed that a resonant Schottky pick-up successfully acquired the frequency information of one particle in storage mode.

In this paper, the technical aspects of the Rare-RI Ring and the preliminary results of the beam commissioning will be described.

INTRODUCTION

Systematic mass measurements, especially for neutron-rich exotic nuclei very far from the stability, are essential for solving the r-process path. However, nuclei in such regions have very short half-lives and have a very low production rate even with the powerful accelerator complex in RI Beam Factory, therefore, very fast and sensitive apparatus is needed. To this end, we have proposed a unique apparatus, the so called “Rare-RI Ring” about 10 years ago [1], to precisely measure masses of such rare-RIs.

Figure 1 shows the conceptual design of mass measurement by using the Rare-RI Ring. When a produced secondary particle passes through the timing detector at F3 of the BigRIPS separator [2], a trigger signal is generated. The trigger signal is transmitted to a fast-kicker system via a high speed coaxial tube. Kicker magnets are then immediately excited by thyatrons. In the meanwhile, the particle goes through the BigRIPS separator, the SHARAQ spectrometer [3], and an injection line. The particle that arrives at the entrance of the ring is injected into an equilibrium orbit of the ring using septum and kicker magnets. After the particle revolves in the ring about 700 μs, it is extracted using another septum and the same kicker magnets to measure TOF. In addition, it is identified by $AE-E$ detectors after extraction. The revolution time of the particle is measured with an precision of better than 10^{-9} under the precise isochronous condition. The β measurement is necessary to correct a revolution time of non-isochronous condition particles. In addition to the short measurement time, this method enables us to measure the mass of even one particle which is suited to measure masses in the r-process region. The mass measurement principle details can be found in Ref. [4].

Figure 1: Conceptual design of mass measurement with the Rare-RI Ring located after the SHARAQ spectrometer.

Figure 2: Components of Rare-RI Ring.

Figure 2 shows the components of the Rare-RI Ring. Injection line consists of five quadrupole doublets and one

* yamaguch@ribf.riken.jp

Abstract

The Rare-RI Ring is an isochronous storage ring to measure masses of short-lived rare nuclei by using relative TOF measurement method. The expected precision of the measured mass is of the order of ppm.

We examined the basic performance of the devices, i.e. injection line, septum magnets, dipole magnets with trim-coils, and fast-kicker system by using α-source in 2014. We demonstrated that trim-coils, which are fixed on the dipole magnets of the ring, can adjust the isochronous condition of the ring. An α-particle was injected into the ring individually by using self-trigger mechanism and was extracted from the ring several turns after the injection.

In June 2015, a commissioning run using a 78Kr beam was performed and basic performances of the Rare-RI Ring were verified. We succeeded in injecting a particle, which was randomly produced from a DC beam using cyclotrons, into the ring individually with the fast-kicker system, and in extracting the particle from the ring less than 1 ms after the injection with same kicker system. We measured time-of-flight (TOF) of the 78Kr particles between the entrance and the exit of the ring to check the isochronism. Through the first-order adjustment with trim-coils, the isochronism on the 10-ppm order was achieved for the momentum spread of $\pm 0.2\%$. Higher-order adjustment employed in future will lead us to the isochronism on the order of ppm. In addition, we confirmed that a resonant Schottky pick-up successfully acquired the frequency information of one particle in storage mode.

In this paper, the technical aspects of the Rare-RI Ring and the preliminary results of the beam commissioning will be described.

INTRODUCTION

Systematic mass measurements, especially for neutron-rich exotic nuclei very far from the stability, are essential for solving the r-process path. However, nuclei in such regions have very short half-lives and have a very low production rate even with the powerful accelerator complex in RI Beam Factory, therefore, very fast and sensitive apparatus is needed. To this end, we have proposed a unique apparatus, the so called “Rare-RI Ring” about 10 years ago [1], to precisely measure masses of such rare-RIs.

Figure 1 shows the conceptual design of mass measurement by using the Rare-RI Ring. When a produced secondary particle passes through the timing detector at F3 of the BigRIPS separator [2], a trigger signal is generated. The trigger signal is transmitted to a fast-kicker system via a high speed coaxial tube. Kicker magnets are then immediately excited by thyatron. In the meanwhile, the particle goes through the BigRIPS separator, the SHARAQ spectrometer [3], and an injection line. The particle that arrives at the entrance of the ring is injected into an equilibrium orbit of the ring using septum and kicker magnets. After the particle revolves in the ring about 700 μs, it is extracted using another septum and the same kicker magnets to measure TOF. In addition, it is identified by $AE-E$ detectors after extraction. The revolution time of the particle is measured with an precision of better than 10^{-9} under the precise isochronous condition. The β measurement is necessary to correct a revolution time of non-isochronous condition particles. In addition to the short measurement time, this method enables us to measure the mass of even one particle which is suited to measure masses in the r-process region. The mass measurement principle details can be found in Ref. [4].

Figure 1: Conceptual design of mass measurement with the Rare-RI Ring located after the SHARAQ spectrometer.

Figure 2: Components of Rare-RI Ring.

Figure 2 shows the components of the Rare-RI Ring. Injection line consists of five quadrupole doublets and one
dipole. TOF start detector is located in the ILC2 chamber (see Fig. 2), in addition to two septa for injecting the particles. The ring consists of six magnetic sectors, each consisting of four dipoles. There is no quadrupole for the ring. This dipole is a rectangular magnet with a radially homogeneous magnetic field. The circumference of the ring is about 60.35 m, and the length of a straight section is about 4.02 m. Kicker magnets are located in the position of the phase advance $3\pi/2$ from the injection septa, and the extraction septa are located in the position of the phase advance $3\pi/2$ from the kicker magnets. In order to ensure an isochronism of the ring by making a gradient magnetic field, the two outer dipoles of each magnetic sector were equipped each by ten trim-coils. The ring has beam diagnostic devices in each straight section. Plastic scintillation counters located in all straight sections to check the injection trajectory. Resonant Schottky pick-up [5] and MCP [6] devices are used to measure the frequency of the revolving particle. Figure 3 shows the bird’s-eye view photograph of the Rare-RI Ring.

Figure 3: Bird’s-eye view photograph of Rare-RI Ring.

Technical Challenges

The individual injection method, which has been proposed in Ref. [7], is a crucial technique for injecting a rare particle into the ring. In order to realize the individual injection, kicker magnets must be excited before the particle arrives at the kicker magnets. For this purpose we constructed a high speed coaxial tube to transmit the trigger signal from F3 of the BigRIPS separator to the kicker system as fast as possible and a fast-response mechanism with thyatron switch to excite the kicker magnets as soon as possible. In addition, fast recharge is necessary to extract a particle from the ring in 700 μs by using same kicker magnets. Therefore, we developed a fast-recharging mechanism, the so called “hybrid charging system”, which has main and sub part. Main part provides 90% of the charging voltage, and the remaining 10% is supplied by sub part of the system. Sub part works to maintain a constant charging voltage level within the range of fluctuation of less than $\pm 1\%$. The time of recharge by this system is achieved in 200 μs. The details of the fast-kicker system can be found in Ref. [8].

Second challenge concerns the isochronous adjustment using trim-coils. We recently performed the isochronous adjustment of the ring with α-particles by using trim-coils. The α-source (241 Am) was installed on the central orbit of the ring in the R-MD1 chamber (see Fig. 2). Two detectors were installed just before/after the α-source to measure the TOF of one turn. Then, we checked the condition of the isochronism based on the TOF width. Figure 4 shows the results of the TOF width as a function of the first-order trim field $(dB/dr)/B_0$. The minimum value of the TOF width is obtained with $(dB/dr)/B_0 = 0.205$. This is consistent with the results calculated by using the α-source energies, which confirms that the trim-coils play the role of adjusting the isochronism. The details of the study by using the α-source can be found in Ref. [9].

BEAM COMMISSIONING

In June 2015, we performed a beam commissioning using 78Kr with 168 MeV/u, the energy of which matches to the individual injection. Specifications of the ring for this commissioning are given in Table 1.

<table>
<thead>
<tr>
<th>Transition γ_{1r}</th>
<th>1.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betatron tune ν_x</td>
<td>1.18</td>
</tr>
<tr>
<td>ν_y</td>
<td>0.93</td>
</tr>
<tr>
<td>Beta function β_x</td>
<td>8.4 m</td>
</tr>
<tr>
<td>β_y</td>
<td>11.9 m</td>
</tr>
<tr>
<td>Dispersion</td>
<td>7.0 m</td>
</tr>
<tr>
<td>Kick angle</td>
<td>11 mrad</td>
</tr>
</tbody>
</table>

First, we transported the beam to the ring with a dispersion matching at the center of kicker magnets in accordance with the optical calculations. After that, we injected 78Kr particles individually on the equilibrium orbit of the ring using the fast-kicker system. We confirmed the periodic signals of the circulating particles with the MCP, which is located on the closed orbit of the ring. The particle cannot be stored for long time and it’s lost after 25 μs due to the penetration efficiency at the MCP material. After removing the MCP from the closed orbit, we succeeded in extracting the circulating particles from the ring after 700 μs.

Isochronism

Figure 5 shows the TOF of 78Kr particles as a function of the momentum spread with different values of the
We verified that a resonant Schottky pick-up successfully acquired the frequency information of one 78Kr particle in a storage mode with a high frequency resolution of 1.29×10^{-6} in FWHM [10] by using a real-time spectrum analyzer. The particle was stored in the ring about 4 seconds while changing its frequency, as shown in Fig. 6. The change in frequency is due to the poor degree of vacuum in the ring, and the shape of curve is influenced by the isochronism for each momentum. We try to understand this interesting phenomena coupled with the results of TOF spectra [10].

PROSPECTS

78Kr beam commissioning run was finished successfully and the off-line analysis is in progress. To achieve higher isochronism, we will perform second-order adjustment with trim-coils by using the frequency information from the resonant Schottky pick-up during the forthcoming high-precision mass measurement experiments.

We are planning the next commissioning using the secondary beams in order to verify the principle of mass measurement in December 2015. The mass measurement experiments will start from 2016.

ACKNOWLEDGMENT

Beam commissioning was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. This work was partially supported by JSPS KAKENHI no. 26287036.

REFERENCES

ISBN 978-3-95450-131-1