Beam Diagnostic Challenges for High Energy Hadron Colliders

Eva Barbara Holzer
CERN, Geneva, Switzerland

HB2014
East Lansing
Michigan

Special thanks to Rhodri Jones, Thibaut Lefevre, Michiko Minty, and Manfred Wendt for their input
<table>
<thead>
<tr>
<th></th>
<th>Physics start date</th>
<th>Max. beam energy [TeV/n]</th>
<th>av. Beam current [mA]</th>
<th>Peak Luminosity [cm$^{-2}$s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brookhaven, 3.8 km circum.</td>
<td>pp polarized</td>
<td>2001</td>
<td>0.255</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>AuAu</td>
<td>2000</td>
<td>0.1</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>dAu, CuCu, UU, CuAu, He3Au</td>
<td>2002, 2004, 2012, 2014</td>
<td>up to 159 (depending on ion)</td>
<td>0.9 – 270 × 1027</td>
</tr>
<tr>
<td>LHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CERN, 26.7 km circum.</td>
<td>pp</td>
<td>2009</td>
<td>3.5 - 4</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015</td>
<td>6.5 - 7</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>HL-LHC upgrade pp</td>
<td>2025+</td>
<td>7</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 × 1034 (levelled)</td>
</tr>
<tr>
<td></td>
<td>PbPb (pPb in 2012)</td>
<td>2010</td>
<td>1.38</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2015</td>
<td>2.76</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>PbPb high lumi upgrade</td>
<td>2020</td>
<td>2.76</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>up to 7 × 1027</td>
</tr>
</tbody>
</table>
The next 10 Years

LHC Injector Upgrade:
- Connection new LINAC4
- Major upgrades many systems: RF, BI, inj./ext. …

High Luminosity Pb Experimental Upgrade:
- ALICE and LHCb

High Luminosity p:
- Peak luminosity 5×10^{34} cm$^{-2}$s$^{-1}$
- 3000 fb$^{-1}$ in 10 years
- Replacement Triplet Quads
- Addition of crab cavities
- Cryogenic upgrade
- Major Experimental Upgrade

<table>
<thead>
<tr>
<th>Year</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-16</td>
<td>p pol., ions</td>
</tr>
<tr>
<td>2017</td>
<td>--</td>
</tr>
<tr>
<td>2018-19</td>
<td>Au</td>
</tr>
<tr>
<td>2020</td>
<td>p pol., Au</td>
</tr>
<tr>
<td>2021-22</td>
<td>--</td>
</tr>
<tr>
<td>2023-24</td>
<td>Transition to eRHIC</td>
</tr>
</tbody>
</table>

Based on a slide by B. Mueller presented at the RHIC Science and Technology Review (Sept., 2014).
Parameters under consideration for
- Future Circulating Collider (FCC)
- Super Proton Proton Collider (SppC)

<table>
<thead>
<tr>
<th></th>
<th>Circumference [km]</th>
<th>Physics start date</th>
<th>Max. beam energy [TeV/n]</th>
<th>av. Beam current</th>
<th>Peak Luminosity [cm(^{-2})s(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC-hh pp</td>
<td>100 (80)</td>
<td>2035-2040+</td>
<td>50</td>
<td>0.5 A</td>
<td>5 × 10(^{34}) (lev.)</td>
</tr>
<tr>
<td></td>
<td>PbPb</td>
<td></td>
<td>19.7</td>
<td>3 mA</td>
<td>12.7 × 10(^{27})</td>
</tr>
<tr>
<td></td>
<td>pPb</td>
<td></td>
<td></td>
<td></td>
<td>3-5 × 10(^{30})</td>
</tr>
<tr>
<td>FCC-ee (e+e-)</td>
<td>26.7</td>
<td></td>
<td>16.5</td>
<td>0.4 A</td>
<td>5 × 10(^{34}) (levelled)</td>
</tr>
<tr>
<td>HE-LHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SppC (pp)</td>
<td>50-70</td>
<td>2042+</td>
<td>25 – 45</td>
<td>0.4 – 0.5 A</td>
<td>2-3 × 10(^{35})</td>
</tr>
<tr>
<td>CEPC (e+e-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges related to Beam Diagnostics I

- Stored energy (beam and superconducting magnets), high brightness beams
 - Avoid uncontrolled losses
 - Machine protection
 - BI systems part of machine protection require high dependability
 - Loss monitoring, certain BPMs, fast current change monitors
 - Collimation and related monitoring
 - Halo Monitoring
 - Avoid intercepting measurement devices
 - Quench magnets
 - Get destroyed by the beam
 - → Non-invasive monitoring of all relevant machine parameters!
 - Small beam sizes
 - Systematic effects dominate the measurement
Energy stored in the Magnets – release of 600 MJ

- LHC 2008 incident **without beam**
 - Electrical arc provoked a He pressure wave damaging ≈600 m of LHC
- LHC magnets at 7 TeV: 10 GJ

![Over-pressure](image1.png)

![Arcing in the interconnection](image2.png)

![Magnet displacement](image3.png)
Energy stored in the Beams – uncontrolled Losses

- LHC at 7 TeV 360 MJ:
 - Pilot bunch of 5×10^9 close to damage level
 - Loss of 3×10^{-7} of nominal beam over 10ms can create a quench

- SPS incident in June 2008
 400 GeV beam with 2 MJ
 (J. Wenninger, CERN-BE-2009-003-OP)

1MJ can heat and melt 1.5 kg of Copper

Energy stored in the Beams – uncontrolled Losses

- LHC at 7 TeV 360 MJ:
 - Pilot bunch of 5×10^9 close to damage level
 - Loss of 3×10^{-7} of nominal beam over 10ms can create a quench

- SPS incident in June 2008
 400 GeV beam with 2 MJ
 (J. Wenninger, CERN-BE-2009-003-OP)

1MJ can heat and melt 1.5 kg of Copper
- LHC 7 TeV: 360 MJ
- HL-LHC: 694 MJ
- FCC-hh: 8 GJ
- HE-LHC: 0.7 GJ

World record @ LHC: 140 MJ @ 4 TeV
Dependability (colloquially: reliability) **analysis**

- Machine protection system must be integrated in the machine design
- Dependability *(reliability, availability, maintainability and safety)* analysis → Budgets for
 - Probability of component damage due to malfunctioning
 - Downtime due to false alarms
 - Downtime due to maintenance

Reliability
- Hazard rates (λ)?
- Failure modes?

Maintainability
- Repair rates (μ)?
- Inspection periods (τ)?

Consequences
- >30 days downtime to change a magnet
- ≈3 h downtime to recover from a false alarm.

Safety
- Probability to loose a magnet: < 0.1/y.
- Number of false alarms per year: < 20/y.
Challenges related to Beam Diagnostics I

- Stored energy (beam and superconducting magnets), high brightness beams
 - Avoid uncontrolled losses
 - Machine protection
 - BI systems part of machine protection require high dependability
 - Loss monitoring, certain BPMs, fast current change monitors
 - Collimation and related monitoring
 - Halo Monitoring

- Avoid intercepting measurement devices
 - Quench magnets
 - Get destroyed by the beam
 - Non-invasive monitoring of all relevant machine parameters!

- Small beam sizes
 - Systematic effects dominate the measurement
New LHC Collimators with Embedded BPMs

- 18 collimators now equipped with BPM buttons
- Readout via compensated diode peak detectors (Diode Orbit electronics)
 - Resolution <100nm for centered beams
- Fast, parallel alignment:
 - <20 s for all BPM collimators without touching the beam
 - 2 orders of magnitude faster than BLM method
- Constant monitoring of beam position → tighter collimator settings → smaller β^*
Halo Monitoring

- See overview presentation of K. Wittenburg on Tuesday and other contributions in this workshop

- Proceedings of HB workshops
Challenges related to Beam Diagnostics I

- Stored energy (beam and superconducting magnets), high brightness beams
 - Avoid uncontrolled losses
 - Machine protection
 - BI systems part of machine protection require high dependability
 - Loss monitoring, certain BPMs, fast current change monitors
 - Collimation and related monitoring
 - Halo Monitoring
 - Avoid intercepting measurement devices
 - Quench magnets
 - Get destroyed by the beam
 → Non-invasive monitoring of all relevant machine parameters
 - Small beam sizes
 - Systematic effects dominate the measurement
LHC Wire Scanner

- Needed to calibrate all other LHC beam size measurements
- At 450 GeV limit at 2.7×10^{13} protons by wire breakage
 - One injected batch of 144 bunches @ 50ns OK
 - One injected batch of 288 bunches @ 25ns NOT OK
- At 6.5 TeV limit at 2.7×10^{12} protons by the quench limit of cold magnet
 - ≈ 20 bunches
- Aging due to wire sublimation

Wire breakage experiment 2011 with Pb ions

34 um

16 um

Courtesy M. Sapinski
RHIC Ionization Profile Monitors (IPM)

- e^- from beam-rest gas interaction accelerated towards readout by E-field
- Guiding B-field
- Amplification by Multichannel plate (MCP)
- 64 strip anode readout
- Fast signal gating to reduce aging of the MCP
- Readout inside a Faraday cage to shield it from the beam’s image current
- single bunch and single turn

R. Connolly et al, PAC 2010
RHIC IPM – recent Improvements

Beam based offset and gain calibration

Absolute emittance measurement by using measured beta function:

- Convergence of horizontal and vertical emittances of both beams under optimized 3D stochastic cooling
- Agreement within 15% with the emittances measured by the experiments STAR and PHENIX

M. Minty et al. IBIC 2014
LHC Ionization Profile Monitor

- Gas injection (Ne)
- Electron collection with 0.2 T guide magnets and MCP signal amplification
- Optical readout from phosphor screen with Radiation-hard camera
- Worked well for Pb ions (what it was designed for)
LHC Ionization Profile Monitor for Protons

- Measured emittance at injection agrees with wire scanner
- When charge density increases → space-charge leads to profile distortion → signal non-gaussian and dominated by systematic effect at 7 TeV
- Increase of magnetic field to 1 T would allow direct measurement
- Try to find and algorithm to disentangle the beam size

poster by M. Sapinski
At 7 TeV even using UV (250nm) the imaging will be **diffraction dominated** ($\approx 250\text{mm} > \text{beam size of 180mm}$) → adding an optical line for interferometry (collaboration with KEK, SLAC and CELLS-ALBA)

- Non-diffraction limited and widely used in e^{-} machines for very small beam sizes

\[
\text{Visibility} = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}
\]

Simulated interference fringes at 7 TeV

Interference fringes for different emittances and predicted visibility as function of emittance
RHIC Schottky transvers Emittance Measurement

- High frequency cavity operated at 2.07 GHz
- **Absolute transvers emittance** measurement demonstrated

- Moving the cavity transversally to the beam and recording the spectrum at each position
- Power in the band of the revolution harmonics is proportional to the square of the distance of the orbit from the center of the cavity
- Sum of the power in the two betatron side-bands is proportional to the square of the rms beam size

→ 20% uncertainty in transverse emittance in 2008 measurement
- Slotted waveguide pick-up operated at 4.8GHz
 - High enough to have small coherent signals
 - Low enough not to have band overlap
- Triple down-mixing
- 25ns gating for individual bunch measurement
- Aim: on-line chromaticity and bunch by bunch tune
- Run1: successful for ion beams
- Currently: Design changes to improve performance for protons

LHC transvers Schottky Measurements
Beam Gas Vertex Monitor (BGV) – Novel Design

- Non-invasive and absolute transvers profile measurement
- Reconstruct the location of inelastic beam-gas interactions (vertex) with particle tracks
- Accumulate vertices to measure beam position, angle, width and relative bunch populations. Require:
 - Sufficient beam-gas rate → controlled pressure bump
 - Good vertex resolution → precise detectors; optimized geometry; LHCb reconstruction and monte-carlo framework
BVG Demonstrator

- **Prototype** BGV system on one beam at the LHC
- Commissioning planned for 2015
- Collaboration with: LHCb (CERN), EPFL (CH), Aachen (DE)

Detector
- Scintillating fibres read out with SiPMs
- Same technology as for the LHCb upgrade

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Accuracy</th>
<th>Time interval</th>
<th>Key factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative bunch width</td>
<td>5% / 5%</td>
<td><1 min / 5 min</td>
<td>vertex resolution stability</td>
</tr>
<tr>
<td>Absolute average beam width</td>
<td>2% / 10%</td>
<td><1 min / 1 min</td>
<td>σ_{beam}, σ_{MS}, σ_{extrap} (σ_{hit})</td>
</tr>
</tbody>
</table>

Aim for the **final instrument** (HL-LHC) / prototype

Courtesy of Plamen Hopchev
Challenges related to Beam Diagnostics II

- Large size of the colliders
 - Number of components
 - Cost
 - Maintainability
 - Data handling, monitoring, logging, analysis
- Readout electronics
 - either close to instrument → radiation hard
 - Or long cables → noise, losses
 → prefer optical diagnostics and optical signal transmission
- High radiation levels (IPs, collimation, …)
 - Radiation hard equipment
 - Interfere with los measurements
Challenges related to Beam Diagnostics III

- Instruments in cryogenic temperatures (BPMs, BLMs)
 - New regime (BLMs)
 - High dependability (feedthroughs etc.)
- Monitoring of beam instabilities
 - Bunch-by-bunch and intra-bunch measurements
 - Improved performance required e.g. for reliable feed-back systems
 - **RHIC**: orbit, tune and coupling feedback was a key to higher luminosities, polarization and integrated luminosity/uptime
 - **LHC**: orbit feed-back, tune feed-back only at selected periods during the cycle
- Wakefields and RF heating
 - Very strict impedance budget
 - Particularly for devices which are numerous (BPMs)
 - Damage due to RF heating
Beam Loss Monitoring at Cryogenic Temperatures

- Loss monitor closer to loss location → avoid that the signal is dominated by other radiation sources (e.g. physics debris)
 - Investigated: LHe, silicon, diamonds
 - First tests in the LHC in 2015
ELECTRON BACKSCATTERING DETECTOR (eBSD)

- **Aim of the RHIC electron lens**
 - Partially compensate the beam-beam effect \rightarrow higher polarized proton luminosities
 - Non-linear focusing by low energy (≈ 6 keV), high intensity (≈ 1 A) electron beam
 - 2 m interaction region in the ≈ 6 T solenoid, the centers of these ≈ 300 μm rms wide beams need to be aligned to less than 50 μm

P. Thieberger et al., IBIC 2014
ELECTRON BACKSCATTERING DETECTOR (eBSD)

- New tool for the precise alignment of electron with ion beam
- Small plastic scintillator installed close to the e-gun
 - Measures back-scattered electrons
- Automatic procedure for beam alignment by maximizing eBSD counting rates

- Might also be used for hollow electron lens considered as option for HL-LHC (CERN_LARP collaboration), based on Tevatron lens design

P. Thieberger et al., IBIC 2014
Intra-bunch Measurements LHC

- Head-Tail monitor
 - Resolution limited to ≈100 μm
- Multiband Instability Monitor – currently being developed
 - Monitors 16 frequency bands individually ($\Delta f_b = 400$ MHz)
 - Trigger high rate acquisition of other systems; potential to reconstruct mode of oscillation

![Graph showing HT signal and amplitude over time](image)
Intra-bunch Measurements LHC

- **Head-Tail monitor**
 - Resolution limited to \(\approx 100 \, \mu m \)
- **Multiband Instability Monitor** – currently being developed
 - Monitors 16 frequency bands individually (\(\Delta f_b = 400 \, MHz \))
 - Trigger high rate acquisition of other systems; potential to reconstruct mode of oscillation

![Graph 1](image1)

- **Graph 1**: Frequency response of the system with different parameters.

![Graph 2](image2)

- **Graph 2**: Time-domain oscillation with varying parameters.
Intra-bunch Measurements LHC

- Head-Tail monitor
 - Resolution limited to \(\approx 100 \mu m \)
- Multiband Instability Monitor – currently being developed
 - Monitors 16 frequency bands individually (\(\Delta f_b = 400 \text{ MHz} \))
 - Trigger high rate acquisition of other systems; potential to reconstruct mode of oscillation

![Graph showing frequency vs. magnitude and time vs. amplitude for different q values.]
Challenges related to Beam Diagnostics III

- Instruments in cryogenic temperatures (BPMs, BLMs)
 - New regime (BLMs)
 - High dependability (feedthroughs etc.)
- Monitoring of beam instabilities
 - Bunch-by-bunch and intra-bunch measurements
 - Improved performance required e.g. for reliable feed-back systems
 - RHIC: orbit, tune and coupling feedback was a key to higher luminosities, polarization and integrated luminosity/uptime
 - LHC: orbit feed-back, tune-feed-back only at selected periods during the cycle
- Wakefields and RF heating
 - Very strict impedance budget
 - Particularly for devices which are numerous (BPMs)
 - Damage due to RF heating
RHIC p-Carbon Polarimeter Target

- Thin carbon ribbons (25-100 nm thick, 1-10 μm wide, 2.5 cm long)
- Scanned through the p beam to measure beam polarization profiles
- Frequent target breakage (also without beam contact, even in park position)
 - installation of cameras
 - RF heating at the wire ends without touching the beam

→ Add “fins” to deviate the EM field from the wire ends reduces significantly the heating

H. Huang et al., IBIC 2014
Video 2

http://www.youtube.com/watch?v=hQsOAyQ7Kck

Courtesy M. Minty
Beams induced RF heating – LHC run1

Overheating → pressure rise

- Injection Kicker
- ATLAS ALFA Detector

Material deformation

- Beam screen around injection protection jaw
- RF contact fingers at magnet interconnects
Synchrotron Light Extraction Mirror

Mirror heating correlated to:
- Beam intensity
- Bunch length
- Beam spectrum

Failure of mirror holder + blistering of mirror coating

Overheated and broken ferrite absorbers (BSRT)
- EM simulations and lab tests are essential for all equipment which is installed on the beam
- Mitigation by e.g.:
 - Design changes to reduce the build-up of wake fields – or deviate from the sensitive location
 - Adding ferrites to absorb the RF power given there is sufficient cooling for the ferrites
 - Multi-mode couplers to extract the power and dissipate it outside of the vacuum
Summary

- Challenges:
 - Dependability (availability, reliability, maintainability, safety)
 - Instabilities
 - Bunch / intra-bunch measurements
 - Measurement stability, precision, resolution → feedback
 - Non-invasive measurements
 - Wakefields / RF heating
Thank you for your Attention
Wall Current Transformer for Intensity Measurement

- New device developed at CERN for the LHC – combination of a Wall Current Monitor and a Beam Current Transformer
 - Insensitive to beam position
 - Installation without breaking the vacuum
 - Small magnetic cores (no worries with material homogeneity)
 - Capable of resolving the LHC bunch

Image

Beam

Courtesy Marek Gasior, Michał Krupa
LHC Schottky System 2010

Triple down-mixing scheme to Base Band
- Successive filtering from bandwidth of 100MHz to 11kHz
- Capable of Bunch by Bunch Measurement thanks to the 25ns Gate.
- Gate reduces noise theoretically about 30dB.

Measurements are made using a 2x25ns = 50ns Gate to be sure we get all the signal from one bunch with the current 50ns spacing used for proton physics.

Slotted waveguide Structure
- High Sensitivity Pickup Structures operating at 4.8GHz
- Amplification of the signal for single bunch
- Pickup transverse sensitivity ~ 200MHz

Beam pipe 60x60mm

270 coupling slots in 0.2mm thick CuBe-foil (~20x2mm, 4mm pitch)

TE₁₀ mode waveguides type WR187 (WG12)
Motivation for Schottky Signal Monitoring: Beam Parameter Characterization

- The Schottky signals allow to characterize some transverse beam parameters in a non-invasive way:
 - Incoherent Tune
 \[q = \frac{1}{2} + \frac{f_2}{2f_{\text{rev}}} - \frac{f_1}{2f_{\text{rev}}} \]
 - Momentum spread
 \[p = \frac{1}{2} \left(\frac{W_1 + W_2}{2h_f_{\text{rev}}} \right) \]
 - Chromaticity
 \[\mu = \frac{W_1}{W_1 + W_2} \]
 - Emittance
 \[\mu = A_1 W_1 + A_2 W_2 \]

Zoom of the LHC proton Schottky signals (B1H, stable beam)
Diamond Detectors

- Fast and sensitive
- Small and radiation hard
- Used in LHC to distinguish bunch by bunch losses
- Dynamic range of monitor: 10^9
- Temporal resolution: few ns
Diamond: arrival time histogram during ramp

- 50 ns bunch spacing
- Loss signal at 25 ns is from opposite beam ("cross talk")
 → sub 25 ns resolution required to resolve

Figure 12: Losses during ramp.

Courtesy B. Dehning
Transverse Profile Measurements – Wire Scanners

<table>
<thead>
<tr>
<th></th>
<th>Wire speed</th>
<th>Number of equipment</th>
<th>Dynamic range</th>
<th>Absolute accuracy on emittance</th>
<th>Spatial resolution</th>
<th>Meas. range in Δx and Δy</th>
<th>Bunch selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSB</td>
<td>rotational 15 m/s</td>
<td>1 H / ring 1 V / ring</td>
<td>100</td>
<td>20%</td>
<td>200μm</td>
<td>calibrated to +/- 5 cm</td>
<td>Could be made b-p-b ?</td>
</tr>
<tr>
<td>PS</td>
<td>rotational 15 m/s</td>
<td>3 H 2 V</td>
<td>100</td>
<td>20%</td>
<td>200μm</td>
<td>calibrated to +/- 5 cm</td>
<td>Could be made b-p-b ?</td>
</tr>
<tr>
<td>SPS</td>
<td>rotational 6 m/s</td>
<td>3 H 3 V</td>
<td>100</td>
<td>20%</td>
<td>200μm</td>
<td>+/- 5 cm</td>
<td>Bunch-per-bunch</td>
</tr>
<tr>
<td>Linear</td>
<td>1/0.6 m/s</td>
<td>2 H 2 V</td>
<td>100</td>
<td>20%</td>
<td>50μm</td>
<td>~ +/- 4 cm</td>
<td>Bunch-per-bunch</td>
</tr>
<tr>
<td>Future SPS 2014</td>
<td>rot. 20 m/s</td>
<td>1 V</td>
<td>10^4 (spec)</td>
<td>< 10%</td>
<td><10 μm</td>
<td>+/- 4 cm (full aperture)</td>
<td>Bunch-per-bunch</td>
</tr>
<tr>
<td>LHC</td>
<td>linear 1 m/s</td>
<td>1 H / ring 1 V / ring + 2 dev./ring</td>
<td>100</td>
<td>2013: 10-50% 2014: 10%</td>
<td>50μm</td>
<td>Full aperture</td>
<td>Bunch-per-bunch</td>
</tr>
</tbody>
</table>

- It typically takes a few 100 turns for one profile (e.g. PSB ~600 turns)
- LS1: systematic simulation study to improve WS accuracy
Transverse Profile Measurements - others

- Relative measurements, they need to be calibrated against the wire scanners

<table>
<thead>
<tr>
<th></th>
<th>Number of equipment</th>
<th>Dynamic range</th>
<th>Absolute accuracy on beam size measurement (after cross calibration)</th>
<th>relative accuracy emittance / beam size</th>
<th>Spatial resolution</th>
<th>Measurement rate</th>
<th>Bunch selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS Synch. 2014</td>
<td>Only above 300GeV</td>
<td>1</td>
<td>200 or 10^5 by changing attenuation</td>
<td>30% on emittance – hope to improve</td>
<td>~50μm (expected)</td>
<td>10Hz (flexible gating time width)</td>
<td>72 bunches – 1 PS batch</td>
</tr>
<tr>
<td>(refurbished)</td>
<td></td>
<td></td>
<td></td>
<td>10%/5% (same setting, 2 bunches in the machine for example)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHC Synchrotron Light</td>
<td>BSRT</td>
<td>1 / beam</td>
<td>200 or 10^5 by changing attenuation</td>
<td>30% on emittance – hope to improve</td>
<td>10%/5%</td>
<td>50μm</td>
<td>10Hz (flexible gating time width)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS 2015</td>
<td>IPM</td>
<td>2: H,V</td>
<td>10^3</td>
<td>20%</td>
<td>5% / 2.5%</td>
<td>100μm</td>
<td>10 bunches in 0.1 s</td>
</tr>
<tr>
<td>LHC 2015</td>
<td>IPM</td>
<td>2 / beam</td>
<td>10^3</td>
<td>20%</td>
<td>5% / 2.5%</td>
<td>100μm</td>
<td>10 bunches in 0.1 s</td>
</tr>
</tbody>
</table>
Beam Halo Mitigation: Hollow E-Lens

- Halo cleaning by electron lens demonstrated at Tevatron.
 - Soft scrapper
 - No material damage
 - Tunable strength – diffusion speed

- Such a lens is considered as option for HL-LHC (CERN_LARP collaboration)

Stancari et al., Phys. Rev. Let. 107, 084802
Set-up and validation of collimation performance

- Find the beam center with each collimator jaw by stepping the jaw towards the beam and observing the BLM signal.

'loss map': losses along the ring normalized to the losses at the primary collimator: performance verification.
New CERN Wire Scanner Development

Design Goals:

- Spatial resolution of few µm (using high resolution angular position sensor)
- Dynamic range: 10^4
- Minimize fork and wire deformations
- Solution to be found for impedance and RF heating
 - tank and fork geometry
 - **damping by loading with ferrite**
 - extracting power with **multi-mode coupler**
- Current Wire Scanners at CERN: Dynamic range 100; accuracy 5-10%; spatial resolution 50 µm (linear type) and 200 µm (rotational)