Two-Dimensional and Wide Dynamic Range Profile Monitor
Using OTR /Fluorescence Screens
for Diagnosing Beam Halo of Intense Proton Beams

KEK / J-PARC
Y. Hashimoto, T. Mitsuhashi, M. Tejima, T. Toyama
Mitsubishi Electric System Service
H. Akino, S. Otsu, Y. Omori, H. Sakai
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
- Motivation

Beam halo: It brings serious activation of the accelerator by beam loss

What to see?
Two-dimensional density distribution from beam core to beam halo of 3GeV Proton Beam.

Beam Intensity $\geq 10^{13}$ proton/bunch

What kind of instrument?
High Dynamic Range Beam Profile Monitor

Dynamic Range: 10^6

What is carried out?
Beam diagnosing for injection beam of J-PARC MR which is extracted beam from RCS.

Evaluation for validity of beam collimation by the collimator
Contents

- Motivation
- **Concept**
 - J-PARC and 3-50 Beam Transport Line
 - OTR by Low γ : 3GeV Proton Beam
 - Large Acceptance Optics & Detector
 - Scaling for Unified Profile
 - Combination Measurement with OTR and Fluorescence
 - Simultaneous measurement of beam core and beam halo
- Conclusions
Concept (1): *Dynamic range*

Combination measurement with OTR and the fluorescence:

Beam core: Measure with OTR from 10 microns titanium foil with smaller beam loss

Beam Halo: Measure with Fluorescence from Chromium doped alumina screen

Adopting Suitable Gain of the Detector: Image Intensifier (II)

![Graph showing Gaussian Beam distribution with OTR and Fluorescence measurements.](image)

- Gaussian Beam distribution $\sigma = 10 \text{ mm}$
- Intensity: 10^{13} proton/bunch
Concept (2): *Energy loss in screen*

Combination measurement with OTR and the fluorescence:

Beam core: Measure with OTR from 10 microns titanium foil with smaller beam loss

Beam Halo: Measure with Fluorescence from chromium doped alumina screen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium Foil 10 micron thick</td>
<td>6.7</td>
<td>9.8e-3</td>
</tr>
<tr>
<td>Alumina Ceramics 0.5 mm thick</td>
<td>330</td>
<td>4.7e-1</td>
</tr>
</tbody>
</table>

* 3GeV Proton, ** 1e13 proton/bunch

- 48 times larger than 10 micron Ti
- Used in only 10^{-2} region: 4.7 e-3 [J/bunch]
- Becomes 1/2 of Ti
Concept (3): *Screen Configuration*

Screen Configuration

Layout (Front View)

- **OTR**
 - **Solid Screen for Beam Core**
 - **Fluorescence**
 - **Movable Alumina Screen for Beam Halo**

Projected Beam Profile
Concept (4): Screen photo (front view)

OTR
Solid Screen for Beam Core

Fluorescence
Movable Alumina Screen for Beam Halo
Concept (5): *Two Target Structures*

New four-direction alumina screen.

Pre-existing triple screen → Inserted just after four direction screen

Operate by two horizontal movable shafts.
Concept (6): *Screen Configuration-2*

Cross Sectional View

- **Alumina Screen**: 0.5 mm thick
- **Fluorescence** *(Isotropic Radiation)*
- **Beam Halo**
- **OTR** *(Angular Distributed Radiation)*
- **Shadow mask**: Stainless plate 0.5 mm thick
- **Titanium Screen**: 10 μm thick
- **Beam Core**: 13 mm
Concept (7): *Fluorescence time*

Light quantity adjustment of the fluorescence from alumina screen
longer fluorescence time of 1ms
⇒ Changing the Image Intensifier (II) Gate

Yield ratio of fluorescence and OTR can be controlled

Exposure (II Gate)

- **OTR**
 - ~200 ns = Bunch Length

- **Fluorescence**
 - 1ms (1/10)

![Fluorescence time of Cr doped Alumina Screen](image)

Beam: 3GeV Proton
:**2.5e11/bunch**

Light Intensity [Arbit.]

- 1.2
- 1
- 0.8
- 0.6
- 0.4
- 0.2
- 0.01
- 0.1
- 1
- 10
- 100
- 1000

Delay [μs]

- 1/10 @1 ms
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
J-PARC and 3-50 BT:

Beam Energy: 3 GeV
Beam Intensity: 1.6×10^{13} proton/bunch
Injection Beam:
2 bunch \times 4 batch

- Our monitor usually measured 2 bunch (1 batch)
- Beam collimators located at 122m upper stream
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
OTR by Low γ: 3GeV Proton Beam:

- Low γ: 4.2 → Larger Angle Spread

\[I(\theta) = \frac{1}{\gamma^2} \left| -\sin(\theta) \right|^2 \left| 1 - \beta \cos(\theta) \right| \]

Angular Distribution

± 13.5 degree

= \frac{2}{\gamma} \text{ (in radian)}
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Large Acceptance Optics (1)

- Large Acceptance (±15 deg.)
- Larger Object Size (100$^H \times 80^V \text{ mm}^2$)
- In vacuum Off-axis Relay Optics

We employed Offner Optics.

Our Scheme

Original Offner Scheme

Diameter 300 mm

Target foil

Diameter 200 mm

Convex mirror

Projection Screen

Concave mirror with hole

Concave mirror Diameter 300 mm
Large Acceptance Optics (2)

Clear Aperture
Horizontal: 200 mm
Vertical: 90 mm

Grid Pattern Test

1mm pitch scale is resolved
New Four Direction Alumina Screen was installed in 2014
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Scaling for Unified Profile (1)

For obtaining an **UNIFIED** profile: *Scaling*

Gain ratio of the image intensifier: G_R

$$G_R = \frac{G_{1000}}{G_{SET}}$$

by Gain curve of the Image Intensifier

G_{1000}: Gain at MCP1000V (Maximum)

G_{SET}: Gain at MCP set voltage at Measurement

Yields ratio Fluorescence/OTR: Y_R

OTR data \Rightarrow data/G_R

FL data \Rightarrow data/Y_R/G_R
Scaling for Unified Profile (2)

\(Y_R \): Yields ratio between Fluorescence/OTR

Integration Ratio (avg.)
\[Y_{MR} = 1.84 \pm 0.07 \] (\(\pm 3.8\% \))

\(Y_R = 1314.6 \)

OTR
50 mm dia. -Hole Target
Fluorescence Alumina Target
Edge: \(\pm 25 \) mm
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low \(\gamma \) : 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Effect of the beam cut by 3-50 BT collimator (1)

Halo Measurement by 25 times Changing Position of Alumina Screen
Gain of II : optimized in each step
Superimposed Image (5 times averaged each)
Beam Condition : Intensity 1.5e13 p/bunch, 50 π painting at RCS Injection
Effect of the beam cut by 3-50 BT collimator (2)

Two-Dimensional Halo Distribution
Dynamic Range of Light Intensity: 4 to 5 order obtained.
Halo Island at Minus fourth order disappeared by Collimator ON
Left and Right Halo distribution has asymmetry.
Effect of the beam cut by 3-50 BT collimator (3)

Horizontal Projection

Dynamic Range: More than six order obtained

Beam Size: More than 120 mm at 10^{-6} order

Horizonatal | Collimator OFF | Collimator ON

![Graphs showing beam size and dynamic range with and without collimator.](image)

Collimator-ON

Waist appears at 10^{-4}

Expansion at 10^{-6}
Effect of the beam cut by 3-50 BT collimator (4)

Vertical

No Significant Difference

Collimator OFF

\[\sigma = 8.04 \text{ mm by beam core} \]

Count

Scale [mm]

Collimator ON

\[\sigma = 8.21 \text{ mm by beam core} \]

Count

Scale [mm]
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Simultaneous Measurement of Beam Core and Beam Halo (1)
Alumina Edge Position: Halo of 10^{-4} order

Difference by Painting Area of RCS Injection of 100 π and 50 π [mm.mrad]

Beam Intensity: $2.99\text{e}13/2\text{bunch}$ 5 times averaged

50 π Painting
- Smaller Beam Size
- Halo Rotation
Simultaneous measurement of beam core and beam halo (2) : as possible as seamlessly (Next step)

Light Yield Ratio : Fluorescence / OTR → 1000

Exposure (I.I. Gate)

Three Orders: Measure with 60 ~ 70dB CMOS Camera
Contents

- Motivation
- Concept
- J-PARC and 3-50 Beam Transport Line
- OTR by Low γ: 3GeV Proton Beam
- Large Acceptance Optics & Detector
- Scaling for Unified Profile
- Combination Measurement with OTR and Fluorescence
- Simultaneous measurement of beam core and beam halo
- Conclusions
Conclusions:

1. By using combination measurement of the OTR from the titanium foil screen and the fluorescence from the alumina screen, we developed two-dimensional and high dynamic-range profile monitor.

2. On the projection profiles, we obtained the beam profile of the core and the halo with around six-orders dynamic range.

3. It was shown that the beam asymmetry or the rotation were measured with this instrument as advantage of a two-dimension.

4. These results greatly benefit to investigation of beam dynamics.
Thank you very much for your attention!