TRANSVERSE EMITTANCE PRESERVATION STUDIES FOR THE CERN PS BOOSTER UPGRADE

E. Benedetto,
C. Bracco, B. Mikulec, V. Raginel, G. Rumolo,
CERN, Geneva, Switzerland,

V. Forte, CERN and Université Blaise Pascal, FR

Acknowledgements: J. Abelleira, C. Carli, G. P. Di Giovanni, R. Garoby, M. Kowalska, A. Lombardi, M.J. Mcateer, M. Meddahi, F. Schmidt and many other LIU colleagues
Circumference: 157m
Super-periodicity: 16
Injection: Multi-Turn p+ → H-
Injection energy: 50 MeV → 160 MeV
Extraction energy: 1.4 GeV → 2 GeV
Cycle length: 1.2s
bunches: 1 x 4 Rings
RF cavities: h=1+2, h=16
Tunes at injection: ~ 4.3, 4.5, 1e-3
Rev. freq. (160 MeV): 1MHz
protons/bunch: 1e11 to 1e13
H. emittance: 1 to 15 um
V. emittance: 1 to 9 um
L. emittance: 0.8 to 1.8 eVs

Space Charge ΔQ > 0.5 @ inj
PSB is the first ring in the LHC p+ chain...where transverse emittance is defined

For LHC beams: **emittance preservation** (vs. losses)

Outline:
- Measurements Emittance vs. Intensity curve
- Space-Charge Simulations ($\Delta Q > 0.5$)
- Blow-up during the H- injection process
- Conclusions

Lot of work behind: code benchmark, simulations of operational beams, studies of best injection (transverse & longitudinal), machine model with new hardware
Emittance vs. Intensity curve

- On Ring 3
- # turns: 1 → 4
- Injecton Tune optimized

Emittance vs. Intensity curve

- Emittance is preserved along acceleration
- Low energy points not understood (scattering at the wire scanners, calibration, uncertainties in dp/p,...)
Scaling for Linac4 (160 MeV)

- Emittance vs. intensity determined by space-charge (and multi-turn injection process)
- Increase in injection energy: 50 to 160 MeV
 - \((\beta \gamma^2)^{160\text{MeV}}/(\beta \gamma^2)^{50\text{MeV}} = 2.04\)
 - Keeping the same Space-Charge \(\Delta Q\) means:
 - Increase of intensity by \(x2\)
 - OR Reduction of emittances by \(x2\)
- The slope of the emittance vs. intensity curve should scale by \(x1/2^*\)

* Dispersion is not included in the scaling
Space-Charge simulations (PTC-Orbit)

- Transversely MATCHED distribution (Gaussian) (*)
 - With a given emittance
 - Scan on the Intensity
- Let it evolve for ~7ms, during fall of the chicane bump
- Quadrupolar errors at the chicane magnets + Eddy currents + Compensation QDE3, QDE14 (time varying)
 - Beta-beating (mostly in vertical) corrected
 - Excitation of half-integer corrected
 - Excitation of the integer line

(*) In longitudinal (for the time being): I let a “rectangular” distribution evolve in an accelerating bucket, h1+h2. NOT YET optimized...
Space-Charge simulations (PTC-Orbit)

- 200 SC nodes
- 2.5 Direct SC module
- 128x128x128
- 250k macroparticles

Emittance reached at the end of the chicane bump is \(~\)“independent” of the starting value

Initial and final longitudinal distribution
Space-Charge simulations (PTC-Orbit)

- H and V Tune spread
- Initial ΔQ_x extending below the integer \rightarrow blow-up

Red: initial 350e10 ppb, 1µm
Blue: final (after 7ms) for the same beam.
Green: initial 350e10 ppb, 1.7 µm.
Simulations with PTC-Orbit

- On a straight line & depends on longitudinal emittance
- BUT: the slope for 1.20eVs is a factor 25% lower
Blow-up during injection process

- Multipole Coulomb Scattering
- Injection mismatch
- Ripples or jitters

After injection, if beam not removed from the foil

During injection

- Graphite foil
 200 µg/cm²
Blow-up during injection process

Target (BCMS): 165e10 protons , emittance ≤ 1µm

No longitudinal nor transverse painting

Ideally matched optics

7 turns injected (40 mA from Linac4, in 0.4 µm)

![Graph showing emittance changes over time](image)

- **a)** Ideal optics
- **b)** 25% mismatch
- **c)** Mismatch as in **(b)** + 2 mm offset (steering, orbit,...)
- **d)** **(b)** + **(c)** + 20 mA from Linac4 (=14 turns inj)

C. Bracco, et al., LIU day 2014
Conclusions: Emittance preservation in the CERN PSB

- **LHC beams**: 165 e10 in 2µm (will be 350 e10 with the Upgrade)
- **Emittance vs. intensity measurements**:
 - Points on a straight line + no blow-up during acceleration
 - Emittance defined by injection process + space-charge ($\Delta Q > 0.5$)
- **Brightness curve scales by 2** (same ΔQ) @ 160 MeV
 - Simulations agree qualitatively:
 - Straight line, dependence on longitudinal emittance
 - 25% difference in slope: Missing something? Uncertainties in longitudinal distributions? Scaling is rough?
- **Blow-up during H- injection** should not prevent 1µm emittances:
 - Foil scattering (<20 turns injection), mismatch, offsets, ripples
- **Next**: benchmark with measurements will continue, optimization H- injection parameters and scan of different tunes.