Abstract
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) a new electron cyclotron ion source (ECRIS) was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity Argon and Xenon beams is envisaged. In this paper we present beam experiments with the GTS2 at iThemba LABS, in which the results of CW, pulsed and afterglow operation are compared.

INTRODUCTION
iThemba LABS is administered by the National Research Foundation (NRF) of South Africa. It provides accelerator and ancillary facilities for: research and training in the physical, biomedical and material sciences; treatment of cancer patients with energetic neutrons and protons and related research; production of radioisotopes and radiopharmaceuticals for use in nuclear medicine, industry and related research. At the heart of the iThemba LABS accelerator complex is the variable-energy, separated-sector cyclotron, which provides beams with a maximum energy of 200 MeV for protons. Beams are directed to vaults for the production of radioisotopes, proton and neutron therapy and nuclear physics experiments as shown in figure 1. Light ions, pre-accelerated in the first solid-pole injector cyclotron (SPC1) with a K-value of 8 are used for therapy and radiisotope production. For radiisotope production and neutron therapy a high-intensity 66 MeV proton beam is used, while a low-intensity 200 MeV beam is used for proton therapy. The second solid-pole injector cyclotron (SPC2) with a K-value of 10 is used for pre-acceleration of light and heavy ions as well as polarized protons from the three external sources [1]. In 2006 the decision was made that, due to the requirements of nuclear physics for new ion species and higher particle energies, a new ECRIS should be procured. A source, based on the design of the Grenoble Test Source (GTS) [2], which is similar to the GTS-LHC at CERN, has been constructed and installed. It is a room temperature source that uses two microwave frequencies, 14.5 GHz and 18 GHz, to deliver highly-charged ions of sufficient intensity to be accelerated in the separated-sector cyclotron to energies in the GeV range. At the same time a 14.5 GHz ECRIS4 that was designed and constructed by Grand Accelerator National d’Ions Lourds (GANIL) [3] and originally built for the Hahn-Meitner-Institute (HMI) in Berlin [4], with its beam line elements, was donated to iThemba LABS and is in operation since 2009.

THE GTS2 ECRIS
The coils, the permanent magnet assembly, the plasma chamber and all mechanical parts of the GTS2 were manufactured by different companies in Europe, which were also involved in manufacturing the GTS-LHC. For the vacuum system of the source three 700l/s turbo pumps (one at injection and two at extraction), one 70l/s turbo pump for the oven system and two dry roughing pumps are used. The longitudinal magnetic field is produced by three coils, namely the injection-, centre-, and extraction coil. The power supplies for the injection- and extraction coil can deliver 1300 A at 60 V leading to a maximum B-field of 1.6 T. A 600 A bipolar power supply is connected...
to the centre coil. The permanent magnet array in the Halbach configuration produces 1.27 T at the plasma wall surface [6]. Two 2.3 kW micro wave generators operating at 14.5 and 18 GHz are connected to the source via WR62 wave guides. The active plasma chamber volume which is manufactured from Aluminium is 1430 cm3 at an active length of 30 cm and a diameter of 7.8 cm. The triode extraction system consists of a plasma electrode which is positioned at the end of the permanent magnet array in the plasma chamber, an intermediate electrode at a distance of 30 mm to the plasma electrode, and a ground electrode at 8 mm distance to the intermediate electrode. The aperture diameters of the electrodes are 12, 17, and 17 mm, respectively. The source can be operated with two resistive ovens which were not installed during the experiments. The bias disc (BD) has a surface of approximately 12 cm2 and is positioned at 189 mm distance from the injection chamber exit flange which roughly corresponds to a position at the beginning of the permanent magnet array in the plasma chamber. Figure 2 shows a schematic of the source set-up.

The source is connected to the transfer beam line via a 1040 bending-magnet. This set up of the beam lines in the ECRIS vault with the new diagnostic beam line for the GTS2 allows for simultaneously operation, i.e. the required beam for cyclotron acceleration will be delivered from one source, while the second source can be used for beam development. The diagnostic beam line of the GTS2 has an einzellens which focuses the beam on the double-focusing distance in front of the 900 magnet. Behind the magnet a horizontal slit is installed on the double-focusing distance to ensure sufficient mass resolution. The diagnostic line is completed with a chamber containing a slit-harp emittance device for both transversal planes and a Faraday cup. The set-up of the two sources in the ECR vault is shown in Fig. 3.

ARGON BEAM MEASUREMENTS

After conditioning the source experiments in CW operation were performed which are important for the injection into the injector cyclotron SPC2. The Argon charge state spectrum was measured in the first Faraday cup (3Q) in the Q beam-line behind the 1040 bending magnet (see Fig. 3).

The source was optimized for charge state 11+ for all measurements. Fig. 4 shows the measured spectrum. Typical values of the source parameters are: Extraction voltage $U_{ex}=9.6$ kV, Intermediate electrode voltage $U_{int}=-2$ kV, Bias disc voltage $U_{BD}=-200$ V, Injection coil current $I_{inj}=1100$ A, Centre coil current $I_{cen}=300$ A, Extraction coil current $I_{ext}=1050$ A, and Argon gas flow $F_{Ar}=1.1$ ml/h producing a pressure at the injection side of $p_{inj}=2*10^{-7}$ mbar and at the extraction side of $p_{ext}=3*10^{-7}$ mbar, 14.5 GHz RF power $P_{rf}=500$ W. A current of 90 e$^+$/A for Ar$^{11+}$ was obtained. The maximum of the distribution is around charge state 9+ to 10+. The figure shows further the influence of Oxygen supporting...
gas (gas flow $F_{O2}=1.5\, \text{cm}^3/\text{h}$). The intensity of the beam for the different charge states is increased by approximately 40%.

In pulsed operation of the source (no supporting gas) with a duty cycle of 50% (50ms RF pulse on, 50ms RF pulse off) the current of the Ar^{11+} ions was slightly increased to 110 μA during the pulse compared to CW operation.

For the injection into the RFQ accelerator at CERN, pulses with a pulse length of only 200 μs at a maximum repetition frequency of 5Hz are required which can be produced from the source in the afterglow regime.

For the afterglow operation the plasma was generated with 50% duty cycle (RF power 50 ms on, 50 ms off) for thermal stability reasons. The bias disc was pulsed with pulse lengths between 1 and 3 ms. The pulse were delayed with respect to the end of the RF pulse between -1 and +3 ms. The best results (pulses which are stable in intensity and repeatability) were obtained for a delay time of 0.5 ms and a pulse length of 1 ms (see Fig. 6). In this mode an intensity of 320 μA without supporting gas and 400 μA with Oxygen supporting gas was achieved. It is also clear from Fig. 5 that the maximum of the distribution is shifted to higher charge states compared to CW operation. The source parameters were chosen to ensure stable operation over several hours. Fig. 6 shows a picture taken from the oscilloscope for afterglow operation with Oxygen supporting gas. Traces 1 and 2 show the end of the RF pulse. Trace 4 shows the pulse for the bias disc switch (delay 0.5 ms, pulse length 1 ms) and trace 3 shows the Faraday cup signal measured across 1 kΩ.

Experiments with Helium as supporting gas resulted in the same beam intensities for the different charge states, but the pulse stability was noticeably reduced. Experiments using the new diagnostic beam line showed that the transmission decreases when compared to the transmission into the Q-line. This effect needs further investigation.

CONCLUSION

The experiments with the GTS2 show its capability to produce intense Ar^{11+} beams. The source parameter for stable beam generation in different operation modes could be determined and the influence of He and O_2 supporting gas was studied. The experiments will be continued to further optimize the source performance.

ACKNOWLEDGMENT

The authors like to thank their colleagues at iThemba LABS for their support.

REFERENCES