SECRAL Status and Test Operation at 24GHz

Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou, 730000, China

D.Z.Xie
IMP Visiting Physicist
OUTLINE

SECRAL: Superconducting ECR ion source with Advanced design in Lanzhou

- Introduction
- Test Results at 24GHz
- SECRAL operation for HIRFL accelerator
- SECRAL beam quality study
SECRAL Motivation

- To achieve performance enhancement for HIRFL accelerator complex.
- Develop a compact fully superconducting ECRIS.
- SECRAL is dedicated to highly charged heavy ion beam production.

Achieved axial field: 3.7T, 2.2T
Sextupole at the wall: 2.0 T
RF frequency: 18-28 GHz
Plasma chamber: φ125-116
Extraction voltage: 20-30 kV

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
SECERAL Magnet Concept and Superconducting Coil Configuration

- Completely New Design!
 - Solenoids-inside- sextupole
 - Smaller plasma chamber

Iron Yoke and Shielding
Sextupole Coil
Iron pole
Iron Segments as Sextupole field Booster and coil Clamping, also reduce the stray field
Vector Fields
Aluminum Clamping Ring
Inject. Solenoid
Middle Solenoid
Extract. Solenoid

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Test Results at 24GHz
SECRAL 24GHz/7kW Gyrotron System

- Reason for choice 24GHz: 24+18GHz better than 28+18GHz;
- 24GHz RF coupling to SECRAL similar to that of SERSE and VENUS at 28GHz;
- All components at 24GHz transmission line are water cooled and as compact as possible

From GYCOM Russia

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
SECRAL with 24GHz/7kW Gyrotron System

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Two plasma chambers for both 18GHz and 24GHz:

Al chamber: Ø116mm, L890 mm

Stainless Steel chamber: Ø120mm, L890 mm
Ar and Xe beams were tuned with a stainless steel chamber started in 08/2009. SECRAL was set at 90-95% maximum field.

- Conditioning and outgasing take longer time at 24GHz;
- Stable operations for medium and high Q need very different parameters optimization;
- X-ray much stronger at 24GHz;

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Test Results of SECRAL at 24GHz – Ar beam

At 24GHz, more mixing gas O$_2$ is needed?
At 24GHz, spectrum moves to higher Q.
Beam intensity is increasing with rf power.
Results achieved with one week conditioning.

Spectrum to optimize Ar$^{14+}$ at 3.5kW/24GHz

Spectrum to optimize Ar$^{14+}$ at 3kW/18GHz

Fig. 6 Power evolution of Ar$^{14+}$ beam intensity.

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Test Results of SECRAL at 24GHz – Ar beam

<table>
<thead>
<tr>
<th>IONS</th>
<th>SECRAL 18GHz 3kW (eμA)</th>
<th>SECRAL 24GHz 3-4kW (eμA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar 12+</td>
<td>510</td>
<td>650</td>
</tr>
<tr>
<td>14+</td>
<td>270</td>
<td>440</td>
</tr>
<tr>
<td>16+</td>
<td>73</td>
<td>149</td>
</tr>
<tr>
<td>17+</td>
<td>8.5</td>
<td>14</td>
</tr>
</tbody>
</table>

20-22 kV, 24GHz, 3-4 kW, $B_{inj}=3.3$ T, $B_{rad}=1.7$ T

To optimize Ar^{16+}, Ar^{17+}, need a lot mixing gas O_2. Optimum condition has not been found for 16+, 17+, 18+. Probably Al chamber is needed.
Test Results of SECRAL at 24GHz—Xe beam

22kV extraction 24GHz, 3.5 kW,
magnet 94%, $B_{inj}=3.5$ T, $B_{rad}=1.75$T

Optimize Xe$^{27+}$

Xe$^{27+}$ keep increasing with 24GHz rf power, not saturate
SECRAL 24GHz – Xe Beam

- SECRAL 24GHz, Xe HCI
- Optimize Xe^{34+}, Xe^{35+} at 3-5 kW.
- With stainless steel chamber.
- Source conditioning more important and complicated.

SECRAL 18+14.5GHz

Optimize Xe^{34+} at 1.8 kW.
With Al chamber.

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
For Xe beam $Q>40$, at 3-5 kW, optimum condition still has not been found. Maybe more source tuning is needed and better results for $Q>40$ should be achieved with Al chamber and 24+18 GHz which will be tested.
SECRAL Xe beam at 18GHz and 24GHz

<table>
<thead>
<tr>
<th>IONS</th>
<th>SECRAL 18GHz <3.2kW (e(\mu)A)</th>
<th>SECRAL 24GHz <5kW (e(\mu)A)</th>
<th>VENUS 28GHz or 28+18GHz >6kW (e(\mu)A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe 26+</td>
<td>410</td>
<td>480</td>
<td>290</td>
</tr>
<tr>
<td>27+</td>
<td>306</td>
<td>455</td>
<td>270</td>
</tr>
<tr>
<td>28+</td>
<td></td>
<td>350</td>
<td>222</td>
</tr>
<tr>
<td>30+</td>
<td>101</td>
<td>152</td>
<td>116</td>
</tr>
<tr>
<td>31+</td>
<td>68</td>
<td>85</td>
<td>67</td>
</tr>
<tr>
<td>34+</td>
<td>21</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>35+</td>
<td>16</td>
<td>45</td>
<td>28</td>
</tr>
<tr>
<td>38+</td>
<td></td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>42+</td>
<td>1.5</td>
<td>3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

H. W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Beam long-term stability at 24GHz/3-5 KW is not as good as that at 18GHz/3kW. Reasons need to be studied.

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Results are similar to those from VENUS;
X-ray is much stronger with higher frequency, higher rf power and higher B_{min}
High energy tail is much larger.
SECRAL Heat Load to the Cryostat from Strong Bremsstrahlung

1 kW rf power 1W heat load,
Almost same as that of VENUS

From point view of reducing heat load to the cryostat, it is better to run SC-ECRIS with double freq heating at lower B_{min}.

Without close-loop LHe supply system or Cryocoolers, impossible to run SC-ECR!

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Modify SECRAL with Cryocoolers for Operation without LHe Consumption

Off-line test with warm He gas, total LHe rate 3-4l/h. Has been operated for more than 7 months at SECRAL.

Cryocooler 1.5W@4.2K

H.W. Zhao, IMP, Lanzhou, ECRIS10, Grenoble, Aug. 2010
Operation status of additional cryostat with 5 cryocoolers

- It has been operated since 12/09.
- The best operation: 2 weeks without LHe refilling.
- Still some problems to be solved. Modification!
- Goal: no LHe refilling at 18GHz/3 kW,
 Refilling LHe(50 l) /3-4 days at 24GHz/3kW
SECRAL is dedicated only for operation of highly charged heavy ion beams.
Beams operated for HIRFL accelerator:

- 209Bi$^{31+}$, 129Xe$^{27+}$, 78Kr$^{19+}$, 58Ni$^{19+}$

At 18GHz, typical rf power 1.3-2.0 kW, extraction voltage 10-22kV

Beam intensity during operation:

- 100-150 eμA for Xe, Kr, 50-70 eμA for Bi$^{31+}$, Ni$^{19+}$(9.8kV)

One month continuous operation, 78Kr$^{19+}$ in Oct.09 and 209Bi$^{31+}$ in Jul.10

Total beam time from SECRAL for HIRFL: >3500 h

With 78Kr beams at CSRe, 9 new nuclides (63Ge, 65As, 67Se...) were identified firstly in the world with $\Delta m/m=10^{-6}$

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Problems of SECRAL operation for HIRFL accelerator

- Low extraction voltage (<15kV for high Q heavy ions)

- Cyclotron beam very sensitive to the plasma conditions due to variations of beam extraction, emittance and image.

- Need to refill LHe if the additional cryostat is not operated normally.

- Control board of the CPI 18GHz rf generator sometimes broken if there is spark.

- The long term stability of beam 209Bi$^{31+}$ and 129Xe$^{27+}$ is not as good as that of last year due to micro-leakage at the extraction insulator and one cooling tube in the injection component.

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Beam quality study at SECRAL

Use M. Stockli’s code to process data

IMP Allison-type emittance scanner. Located after the analyzing magnet

At 15 kV, < 1kW, lower intensity

Preliminary

Xe beam

Charge State

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
20 22 24 26 28 30 32
Norm-rms Emittance (π∙mm∙mrad)

rf-24GHz

rf-18GHz

Xe beam

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Emittance/Brightness VS RF power, bias voltage, solenoid lens current

Xe$^{25+}$ optimized, rf frequency: 18GHz, HV: 22kV, drain current: 5.04emA, beam current: 245eμA, slitX: 20mm.

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
Emittance/Brightness VS magnetic fields

Injection Magnetic Field (T)

- **Kr12+ emittance**
- **Kr17+ emittance**
- **Kr22+ emittance**
- **Kr12+ brightness**
- **Kr17+ brightness**
- **Kr22+ brightness**

- **Kr17+ optimized, rf :18GHz, 1.5kW.**
- **HV: 15kV, beam current: 100eμA,**
- **drain current: 3.1emA**

Extraction Magnetic Field (T)

- **Kr12+ emittance**
- **Kr17+ emittance**
- **Kr22+ emittance**
- **Kr12+ brightness**
- **Kr17+ brightness**
- **Kr22+ brightness**

Radial Magnetic Field (T)

- **Kr12+ emittance**
- **Kr17+ emittance**
- **Kr22+ emittance**
- **Kr12+ brightness**
- **Kr17+ brightness**
- **Kr22+ brightness**

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
<table>
<thead>
<tr>
<th>Q</th>
<th>SECRAL 18 GHz α<3.2 kW μA</th>
<th>SECRAL 24GHz 3-5kW μA</th>
<th>VENUS 28 GHz 5-9kW μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O</td>
<td>6+</td>
<td>2300</td>
<td>2860</td>
</tr>
<tr>
<td></td>
<td>7+</td>
<td>810</td>
<td>850</td>
</tr>
<tr>
<td>40Ar</td>
<td>12+</td>
<td>510</td>
<td>860</td>
</tr>
<tr>
<td></td>
<td>14+</td>
<td>270</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>16+</td>
<td>73</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>17+</td>
<td>8.5</td>
<td>36</td>
</tr>
<tr>
<td>129Xe</td>
<td>20+</td>
<td>505</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>27+</td>
<td>306</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>101</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>31+</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>34+</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>35+</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>42+</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>43+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>209Bi</td>
<td>28+</td>
<td>214</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>30+</td>
<td>191</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>41+</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>44+</td>
<td>15</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>48+</td>
<td>4.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>1.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Summary

- SECRAL was tested at 24GHz and results are promising. Beam test at 24GHz has not been conducted since last November due to failure of the gyrotron power supply system.
- Beam time from SECRAL for HIRFL accelerator has been more than 3500 h at 18GHz operation. But beam quality and long-term stability at high RF power need to be studied carefully.
- SECRAL beam test and operation at 24GHz will continue and better results should be coming up. U beam test will be conducted with a new HT oven. A new SC-ECRIS is under design at IMP.

H.W.Zhao, IMP, Lanzhou, ECRIS10, Grenoble, August 2010
THANKS for your attention!
Faraday-cup to measure beam current

- Good shielding to the ground.
- Water cooled down through BeO.
- Suppressor electrode -150 ~-200 V.
- Cone-shape cup prevents from electrons coming out.
SECRAL Beam Transport Line

Designed for 15-20 mA total beam transmission at 20-30 kV extraction

Main Design Issues:
1. High transmission efficiency
2. High mass resolution (1/100)
3. Match with the axial injection beam line

Analyzing magnet:
- Bending angle: 110 degree
- Bending radius: 600 mm
- Pole gap: 120 mm