CYCLOTRON 13

ECR SOURCE DEVELOPMENT

Thomas Thuillier
LPSC
53 rue des Martyrs
38026 Grenoble cedex
France
e-mail: thuillier@lpsc.in2p3.fr

LBL from 08/12 to 08/13
Preamble

• The ECRIS’12 Workshop and the ICIS’13 Conference demonstrated that the ECR Ion Source field is still very active

• Many interesting new developments have been presented in the last years, but it’s unfortunately impossible to summarize all of them in 25 minutes

• The philosophy retained for this presentation is to focus on some
 • new challenging projects
 • newcomers
 • Original/exotic developments
OUTLINE

• ECRIS DEVELOPMENT FOR (non cyclotron) ACCELERATORS
 • FRIB (MSU)
 • SPIRAL2 (GANIL)
 • RISP (IBS) newcomer
 • KBSI (KBSI Busan) newcomer

• SOME ORIGINAL/EXOTIC ECRIS DEVELOPMENT
 • INTENSE PULSED PROTON BEAMS AT IAP (IAP RAS)
 • INDUSTRIAL APPLICATIONS WITH THE COMIC SOURCES (LPSC)
 • $TE_{01} \rightarrow HE_{11}$ MODE CONVERTER FOR THE VENUS ECR ION SOURCE (LBL)
 • MASS SPECTROSCOPY (ANSTO) newcomer
ECR developments for the FRIB project

- A facility to study nuclei synthesis and properties far from stability by means of radioactive ion beams
- Accelerate ion species up to 238U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW to the target

- 450 µA of 238U$^{33+}$+238U$^{34+}$ required from the source
- Beam norm. emittance (99%):
 - <0.9 π.mm.mrad (for single charge)
 - <0.6 π.mm.mrad (for dual charge)
ECR Developments for the FRIB Project

FRIB ECR systems

- Two ECR on two 100 kV HV platforms:
 - Existing ARTEMIS ECRIS (room temp.)
 - For commissioning
 - An upgraded version of VENUS
 - For high intensity beam operation
 - Under design

- A complex achromatic LEBT to transport simultaneously ^{33+}U and ^{34+}U beams
 - The LINAC is one floor below (not shown here)
Uranium production test with VENUS (LBNL+MSU)

- Impressive Uranium spectrum!
- Oven with a Rhenium crucible
 - \(U \) consumption \(\sim 9 \text{ mg/h} \)
- 2 kW 18 GHz + 6.5 kW 28 GHz
 - VENUS tuned to its maximum experimental power
- LEBT transmission limited at 22 kV
 - HV drain 9 mA, FC tot \(\sim 5 \text{ mA} \)
- No production limitation observed: source still responsive with power and oven temperature

- Emittance compatible with FRIB specification

Validates the FRIB operation

With 220 µA \(U^{33+} \) + 220 µA \(U^{34+} \)
VENUS upgrade for FRIB

- VENUS original design

- Cold mass of FRIB SC-ECR essentially identical to VENUS
 - re-design entrusted to LBL Superconducting Group (see next slides)

- Original VENUS Cryostat extensively modified (MSU)
 - Cooling rely only on cryocoolers
 - Added cooling capacity at 4.2 K (8 to 9W total vs. 5 to 6 W for VENUS)
 - Optimized material, and design to minimize heat leak and simplify maintenance
FRIB / VENUS upgrade: possible new cold mass design

- New cold mass mechanics design for the coils
 - Bladders and Keys
- Each sextupole coil is dismountable
- Pre-stress can be modified/optimized
 - By changing the keys size

*OPTIMIZATION:
Yoke keyway features can be incorporated in the Solenoid Bobbin – eliminating a thin, cylindrical machining. Also, the Load Pads can be made thicker and structurally stable.
FRIB / VENUS upgrade: possible new cold mass design

• Exploded View

ECR Developments for the FRIB Project
ECR development for the Spiral2 project

- GANIL extension to produce radioactive ion beams (RIB)
 - 5 mA Deuterons on target
 - Re-acceleration of RIBs in existing cyclotron
- Stable Heavy ion program with the LINAC
 - Super Separator Spectrometer
 - Neutron for Science

ECR challenge:
- Produce 1 mA A/Q=3 beams up to the argon mass at 60 kV
- Produce high intensity Metallic beams (Ni, Ca, S, Si, C…)
- Emittance 1σ norm. RMS<0.4 π.mm.mrad
Deuteron Spiral2 LEBT commissioning

- A variation of the SILHI (Taylor) source
 - Permanent magnets
 - The source produces up to 100 mA of D+
 - 0.1 to 5 mA required @ 40 kV OK (see plot)
 - Emittance OK

- Source ant LEBT commissionned at CEA/IRFU Saclay

- Now under assembly at GANIL
A/Q=3 ECR and LEBT commissioning

• Source and LEBT commissioned at LPSC, Grenoble
 • Excellent transmission (T>90%)
• Starter source is PHOENIX V2
 • Room temperature 18 GHz ECRIS
 • OK for LINAC commissioning at GANIL and first year experiments
 • Emittance OK
• But a new high performance ECRIS should be built (and financed) to fulfill the final beam requirement

<table>
<thead>
<tr>
<th>Ion</th>
<th>Required (µA)</th>
<th>PHOENIX V2 (µA)</th>
<th>World record (µA)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(^{6+})</td>
<td>1000</td>
<td>1300</td>
<td>3000</td>
<td>VENUS</td>
</tr>
<tr>
<td>S(^{12+})</td>
<td>240</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ar(^{14+})</td>
<td>420</td>
<td>50</td>
<td>514</td>
<td>VENUS</td>
</tr>
<tr>
<td>Ca(^{16+})</td>
<td>160</td>
<td>16</td>
<td>70</td>
<td>SECRAL</td>
</tr>
<tr>
<td>Ni(^{19+})</td>
<td>57</td>
<td>19</td>
<td>50</td>
<td>SUSI</td>
</tr>
</tbody>
</table>

Heavy ion LEBT @ LPSC
Spiral2 ECR A/Q=3 upgrade and prospect

- PHOENIX V2 → PHOENIX V3 upgrade
 - Increase the plasma chamber volume: 0.7 → 1.4 litre
 - ECR Magnetic confinement kept identical
 - Expected shift of CSD: Gain expected +50-100% on A/Q=3
 - Under design, to be assembled and tested in 2014

- Long term upgrade: design and build a superconducting 28 GHz ECRIS
 - Pending funding
The Rare Isotope Science Project (Institute of Basic Science)

- A new RIB facility to study nuclei far from stability in Rep. of Korea
- Project approved in 2009
- The beam requirement is to accelerate ion from H to 238U.
- ECRIS requirement:
 - 400 μA of 238U$^{33+}$+238U34 (déjà vu)
 - 1 σ norm. Emittance <0.1 π.mm.mrad
ECRIS development for the RAON accelerator

- A Newcomer team in the ECRIS community from Daejeon
- A 28 GHz superconducting ECRIS is under development
 - Overall dimension and cryostat technology similar to VENUS
 - 4 axial coils instead of the usual 3 (inspired by the SUSI SC (MSU) with its 6 coils)

Boundary condition:

$B_{\text{inj}} > 3.5B_{\text{ecr}}$, $B_{\text{ext}} \approx 2B_{\text{ecr}}$, $B_r \approx 2B_{\text{ecr}}$, $B_{\text{min}} \approx 0.8B_{\text{ecr}}$

Design result:

$B_{\text{inj}} = 3.61$ T, $B_{\text{ext}} = 2.07$ T, $B_r = 2.17$ B_{ecr}, $B_{\text{min}} = 0.545$ T
Superconducting coil prototyping

• 3 single hexapolar coils prototype have been built
 • Rectangular wire 1.9x1 mm² with Cu:NbTi ratio of 3:1
 • 1 saddle coil wet winding, no fiber cloth
 • 1 racetrack coil pre-preg impregnation (wet winding, fiber cloth)
 • 1 saddle coil, pre-preg impregnation => validated
Superconducting coil test performed in LHe

- The final saddle prototype reached 95% of wire Ic current data
 - Validation of the design
- Other coils under construction
- Final assembly and test will follow
A new compact LINAC at the Korean Basic Science Institute, (KBSI), Busan, South Korea

- Project started in 2009
- The goal is to produce intense fast neutron flux up to 5×10^{13} n/s applied to neutron radiography
- A LINAC accelerates 1 mA of $^7\text{Li}^{3+}$ to produce fast neutron flux in a windowless hydrogen target
 - LEBT equipped with a 28 GHz SC ECR Ion Source
 - RFQ 500 kV/u
 - DTL 3 MeV/u

Unfortunately only a few papers available on the topic…
A new 28 GHz ECRIS at KBSI

- Another Newcomer Team in the ECR community
- The ECRIS construction is well advanced
 - The ECRIS design and technology is close to VENUS (LBNL)
 - Except for the hexapole coils which are more inspired from SECRAL (IMP Lanzhou)
 - Racetrack coils with a trapezoid section
A new 28 GHz ECRIS at KBSI

- Individual Coil test in a vertical cryostat
 - Axial coils OK
 - Hexapole reacetrack at 70% of design
 - At least suitable for a high performance 18 GHz operation (1.5T)
 - Tests stopped because of LHe shortage
A new 28 GHz ECRIS at KBSI

- The source has been assembled recently:
 - We wish them good luck with the final global magnetic test!
SMIS 37 is a pulsed ECR operated at 37.5 GHz

- RF power up to 100 kW
- Pulse duration ≤ 1.5 ms
- Optical microwave coupling
- Gaussian beam (linear polarization)
- Fast pulsed gas valve (5 ms pulse)
- Water cooled pulsed coil
 - Capacitor discharge (T/2=11 ms)
 - Bmax~4 T
- HV ≤ 65 kV
- Beam Current measured right at the extraction in a Faraday cup
- Or current analyzed in a bending magnet
- Beam emittance measured with a pepper pot
- Gasdynamic regime (collisional plasma), P~10^{-3}-10^{-4} mbar
450 mA of H⁺

- SMIS 37 produces pulses up to 450 mA of H⁺
 - Diode Ion Extraction:
 - HV electrode Ø10 mm
 - ground electrode Ø22 mm
 - Proton fraction ~95%
H$^+$ Emittance measurement

- SMIS 37 Beam emittance
 - 450 mA H+
 - Current density~600 mA/cm2
 - 90% norm. Emittance is $0.3 \, \pi \, \text{mm.mrad}$
 - So RMS norm. Emittance~0.06 $\pi \, \text{mm.mrad}$

- Why is the emittance so small?
 - Because the magnetic emittance is small!
 - Plasma drifts far out of the magnetic trap and the beam is accelerated where $B \ll B_{\text{max}}$
COMIC sources at LPSC

- COMIC 2.45 GHz
 - Compact ECR source operated at low power
 - 10 W solid amplifier

Industrial applications with the COMIC sources at LPSC
Industrial applications with the COMIC sources at LPSC

COMIC 2.45 GHz

- 1W vacuum ECRIS

Diagram with labels:

- Faraday cup
- ground electrode
- Intermediate electrode
- COMIC source
- 1W isolator
- 1W 2.37-2.51 GHz
- 12 V/ 500 mA

Ar - 24 µA - Φ 1 mm - 20 KV (18 KV) - 1 W - ~ 3 mA/cm²
COMIC 2.45 GHz

- Emittance - Xenon – 1.8 µA tot / 3 W / Ø 0.3 mm / 15 kV

1 σ RMS
1.2 π.mm.mrad
15 KV
3/10 mm ext.
Industrial applications with the COMIC sources at LPSC

COMIC Application on a Focusing Ion Beam

- Orsay Physics FIB

COMIC source inside

Microsurgery Of an ant head
COMIC Application for Implantation

• Multi-beam implanter 10 sources (HV>30 kV)
COMIC Application for thin film deposition

- Multi-Beam Sputtering with 20 ECR sources
COMIC 5.8 GHz

- The Goal is to improve the current density (ECR scaling law)
 - Quarter wave cavity down-scaled from 2.45 to 5.8 GHz
 - A clear current increase is observed
 - Higher plasma density

15 kV - Ø 0.3 mm extraction - Ar gas pressure:
2\times10^{-6} \text{ mbar at 2.45 GHz}
1\times10^{-5} \text{ mbar at 5.8 GHz}
TE$_{01}$ to HE$_{11}$ Mode Converter for the VENUS ECR Ion Source

Motivations:

- The usual 18 GHz mode injected in an ECRIS is the TE$_{10}$
 - Transverse Electric, linearly polarized
 - Rectangular waveguide
 - Efficient plasma coupling
 - Excellent performance vs RF power
- The 24/28 GHz mode injected in new generation ECRIS is the TE$_{01}$
 - Oversized circular waveguide
 - Transverse Electric circular polarization
 - The RF power density profile is hollow
 - Weaker performance vs power observed /18 GHz
- Is this weaker performance coming from the TE$_{01}$ mode used?
HE\textsubscript{11} mode vs TE\textsubscript{01}

- The HE\textsubscript{11} mode is used in fusion research since the 80’s
 - HE\textsubscript{11}=Hybrid Electric~85\%TE\textsubscript{11}+15\%TM\textsubscript{11}
 - Quasi gaussian beam profile with a linear polarization

- The HE\textsubscript{11} @ 28 GHz is nearly equivalent to the TE\textsubscript{10} @ 18 GHz
HE\textsubscript{11} conversion steps

• The mode conversion is done into two steps:

1) Convert the TE\textsubscript{01} to TE\textsubscript{11} using a circular waveguide whose center is wiggling in a direction perpendicular to the waveguide axis. This is the « Snake ».

2) Convert partially the TE\textsubscript{11} to TM\textsubscript{11} to build up the HE\textsubscript{11} in a corrugated waveguide whose groove depth is following a special curve from \(\lambda/2\) to \(\lambda/4\)
Snake optimum profile

- Obtained by a simulation program

Length 650 mm

X (m) vs. Axis location (mm)

-4.7 mm

+1.0 mm

TE01 → HE11 mode converter for the VENUS ECRIS at LBL
Snake calculated mode conversion profile

Modes

<table>
<thead>
<tr>
<th>Curvature Coupling Coefficients</th>
<th>Energy (normalized to 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE11-TM21</td>
<td>0.2605380</td>
</tr>
<tr>
<td>TE11-TE22</td>
<td>-0.0883540</td>
</tr>
<tr>
<td>TE11-TM22</td>
<td>-0.0970206</td>
</tr>
<tr>
<td>TE11-TE02</td>
<td>0.1590250</td>
</tr>
<tr>
<td>TE11-TM02</td>
<td>-0.313236</td>
</tr>
<tr>
<td>TE11-TM01</td>
<td>3.5267400</td>
</tr>
<tr>
<td>TM11-TM02</td>
<td>-1.724160</td>
</tr>
<tr>
<td>TM11-TM01</td>
<td>3.3100900</td>
</tr>
<tr>
<td>TE01-TE11</td>
<td>-1.6289790</td>
</tr>
<tr>
<td>TE01-TE12</td>
<td>2.489450</td>
</tr>
<tr>
<td>TE01-TE13</td>
<td>-0.1800641</td>
</tr>
<tr>
<td>TE11-TE21</td>
<td>2.6557800</td>
</tr>
<tr>
<td>TE12-TE21</td>
<td>-0.8366008</td>
</tr>
<tr>
<td>TE11-TE21</td>
<td>1.7056530</td>
</tr>
<tr>
<td>TM11-TE21</td>
<td>1.4960860</td>
</tr>
<tr>
<td>TM11-TM21</td>
<td>2.4503221</td>
</tr>
</tbody>
</table>

97% into TE11

T. Thuillier, LPSC, CYC’13, Vancouver, Canada, September 17, 2013
New VENUS Injection Assembly

18 GHz waveguide

SNAKE TE_{01} to HE_{11}

TE_{11}-HE_{11} converter

Plasma Screen

$\text{TE}_{01} \rightarrow \text{HE}_{11}$ mode converter for the VENUS ECRIS ECRIS at LBL
Initial tests with the HE11 mode launcher

- Installation beginning of August 2013
- It has preformed very well in the early tests.
 - Up to 5 kW of power
 - No problems with arcing or parasitic mode generation
- Compared to the old system
 - Tuning appears to be broader
 - Smoother dependence on 28 GHz power (more monotonic)
 - Maximum Xe^{27+} test at 5 kW of 28 GHz only
 - TE_{01} mode launcher 330 μA
 - HE_{11} mode launcher 370 μA
 - Some indications of improvements when used in two frequency mode with the 18 GHz
- Further development is needed see if HE_{11} mode launching has significant advantages over TE_{01} mode
 - VENUS has an enormous range of settings, ions and power levels
 - As Geller said, “Tuning an ECR ion source is searching for an island of stability in a sea of turbulence.” This will take some time.
The Ion Charge Exchange Spectroscopy at ANSTO

- 7 GHz ECRIS
 - Quartz tube
 - Volume 300 ml
 - P<100 W
- $^{14}\text{C}:^{12}\text{C}$ ratio measurement down to 10^{-9}
- Charge 3+
 - $^{14}\text{N}^3+$ rejection
 - Molecule rejection ($^{13}\text{CH},^{12}\text{CH}_2$..)
- Online transient $^{14}\text{C}:^{12}\text{C}$ ratio count foreseen for medical application
- Limitations:
 - Reproducibility
 - Ion residence time in plasma chamber
 - background

Mass spectroscopy at ANSTO

ICE-MS
Source upgrade

- Hexapole rotation to enhance desorption from the plasma chamber walls
Thank you for your attention!