Commissioning of SOLEIL Fast Orbit Feedback System

Nicolas HUBERT
Synchrotron SOLEIL
On behalf of the Diagnostics group
Summary

• SOLEIL characteristics
• Fast Orbit Feedback principle
 – Beam Position Monitors
 – Correctors
• Architecture
 – Algorithm computation
 – Data Distribution
 – Power-supplies control
• Data Processing
• First results
 – Commissioning
 – FOFB efficiency
 – Future improvements
• Conclusion
SOLEIL Main Characteristics

- Storage Ring circumference: 354 m
- Energy: 2.75 Gev
- Nominal current: 500 mA (fall 2008, presently 300 mA)
- 3rd generation => 29 % of circumference for Insertion devices
- Extended photon spectral range:
 - From UV (5 eV) up to hard X-rays (30 keV)

- First beam in 2006
- 14 beam lines take beam
- +12 beam lines under construction
- 800 A.h integrated current (today)
Beam Stability

- Great care has been taken in the design of the machine to improve its stability:
 - Long term (year):
 - Foundations:
 - Slab of the ring and experimental hall on ~600 15 meters long piles
 - Medium term (24 hours):
 - Temperature is regulated:
 - Experimental hall: $21^\circ\text{C} \pm 1^\circ\text{C}$
 - Storage ring (air and water cooling): $21^\circ\text{C} \pm 0.1^\circ\text{C}$
 - BPMs blocks are bolted to girders and mechanically isolated (bellows)
 - A Slow Orbit Feedback System (since May 07)
 - Correction rate 0.1 Hz
 - Top-up (end 2008)
 - Short term:
 - Girder design (lowest ringing frequency: 46 Hz)
 - Fast Orbit Feedback System
Fast Orbit Feedback Principle

• Purpose of the system
 – Stabilizing the beam position in the high frequencies (>0.1 Hz)

• Perturbation sources in this frequency range:
 – Ground vibrations (girder modes)
 – Mains frequency (50 Hz)
 – Overhead cranes of the Experimental Hall
 – Insertion devices (transitions of the feedforward correction during gap changes)

=> Fast orbit feedback system should have its cut-off frequency above 150 Hz
Fast Orbit Feedback Principle: Beam Position Monitors

- BPM blocks:
 - 120 units
 - 48 on the straight sections
 - 72 in the arcs

- BPM electronics:
 - 120 “LIBERA” modules
 - Developed by Instrumentation Technologies and SOLEIL
 - Subsequently used and improved by most storage ring in the world
 - Based on an FPGA
 - Data stream for the Fast Orbit Feedback:
 - Frequency rate: 10 kHz
 - Resolution in 100 Hz BW: 200 nm
Fast Orbit Feedback Principle: Correctors

• Choice of the correctors:
 – 56 Slow correctors for slow orbit feedback are located inside the sextupoles.
 – Vacuum chambers are in Aluminum for low vacuum chamber impedance with NEG coating
 – Eddy currents in Al prevents high frequency corrections

=> Necessity to have different correctors for the Fast Orbit Feedback

 – Air-coil correctors
 – Over stainless steel bellows
 – Located on each side of the 24 straight sections
 => 48 units
 – 20 µrad maximum strength
 – Cut-off frequency: 2.5 kHz
FOFB Architecture

- The most demanding part for computing resources is a matrix multiplication
 - Inversed response matrix (SVD computation is done offline)
 - Difference between current orbit and golden orbit

- Matrix multiplication is split and distributed:
 - Processing of one line of the matrix is done in one Libera FPGA

 \[\text{Inversed response matrix (SVD)} \times \begin{pmatrix} \Delta X_i \\ \Delta Y_i \end{pmatrix} \]

 => 48 Liberas (out of 120) are calculating correction data for FOFB
FOFB Architecture

- An ‘all embedded’ solution
 - All the processing of the FOFB is done in the LIBERA FPGA, on top of the position calculation provided by Instrumentation Technologies
 - Different interfaces for data exchanges are built in the LIBERA.

![FOFB Architecture Diagram](image)

- RS485
- Ethernet
- Rocket I/O

To corrector power supplies
Configuration and monitoring
Position Data from 119 other BPMs
FOFB Architecture: Fast Dedicated Network (10 kHz)

- **Global Feedback:**
 - All position data have to be delivered to all BPM modules
FOFB Architecture: Power Supply Control

Overall latency ~360 µs
FOFB Architecture:

4 power supplies
=> 2 correctors

RS 485 links

Copper links

Optic fibers
Data Processing

Beam Position Monitor application
(provided by Instrumentation Technologies)

Communication Controller: designed by Diamond Light Source
Initial Design of the Fast Orbit Feedback for Diamond Light Source, ICALEPS 2005
FOFB Commissioning

• Schedule:
 – October 2007: Data distribution is operational
 – December 2007: Feedback loop is closed
 – January -> July 2008: Optimization of the system
 – September 2008: FOFB to be available for operation

• 2 configurations tested:
 – 48 BPMs and 48 correctors
 – 120 BPMs and 48 correctors

• FOFB is efficient from DC to ~100 Hz (cut-off frequency:~400 Hz)

• System efficiency:
 – The frequency range where the FOFB has an influence can be divided in 3 area:
 • 1 Hz to 350 Hz : Ground vibrations, mains,…
 • 0.01 Hz to 1 Hz : Insertion devices, crane
 • DC to 0.01 Hz : Drifts (thermal effects)
FOFB Efficiency (1-350 Hz)

HORIZONTAL

Measurement on a BPM outside the feedback loop

VERTICAL

Noise Spectrum in horizontal plane

Noise spectrum in vertical plane

Integrated noise horizontal plane

Integrated noise vertical plane
FOFB Efficiency (0.01 Hz – 1 Hz)
Effect on the perturbations caused by the insertion devices
(vertical position at source points)
FOFB efficiency (DC to 0.01 Hz): slow drifts (thermal effects)

<table>
<thead>
<tr>
<th></th>
<th>UV</th>
<th>Soft X ray</th>
<th>Hard X ray</th>
<th>Bending magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ X (µm)</td>
<td>32</td>
<td>18</td>
<td>39</td>
<td>?</td>
</tr>
<tr>
<td>Δ X pp (fofb off) 3.5h</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>4.5</td>
</tr>
<tr>
<td>Δ X pp (48x48) 2h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Δ X pp (120x48) 3h</td>
<td>0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Δ X' (µrad)</td>
<td>4.6</td>
<td>3.4</td>
<td>1.5</td>
<td>?</td>
</tr>
<tr>
<td>Δ X' pp (fb off) 3.5h</td>
<td>0.5</td>
<td>2.5</td>
<td>1.5</td>
<td>11</td>
</tr>
<tr>
<td>Δ X' pp (48x48) 2h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Δ X' pp (120x48) 3h</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Δ Y (µm)</td>
<td>6</td>
<td>0.65</td>
<td>0.55</td>
<td>1.5</td>
</tr>
<tr>
<td>Δ Y pp (fb off) 3.5h</td>
<td>4</td>
<td>5.8</td>
<td>3.2</td>
<td>17</td>
</tr>
<tr>
<td>Δ Y pp (48x48) 2h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.1</td>
</tr>
<tr>
<td>Δ Y pp (120x48) 3h</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Δ Y' (µrad)</td>
<td>4.2</td>
<td>1.6</td>
<td>0.52</td>
<td>5.3</td>
</tr>
<tr>
<td>Δ Y' pp (fb off) 3.5h</td>
<td>0.3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Δ Y' pp (48x48) 2h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>Δ Y' pp (120x48) 3h</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
FOFB efficiency and future improvements

- High frequencies: 1-350 Hz
 - FOFB efficiency is already OK, but could be improved around 50 Hz (number of eigen values optimization)
 - Not much noise added (mainly around 200 Hz)

- Low frequencies: 0.01-1 Hz
 - Very good efficiency
 - Perturbations caused by insertion devices transitions or cranes movements are strongly suppressed

- Drifts: DC to 0.01 Hz
 - FOFB can correct the drifts for ~8 hours, before its correctors reach the saturation
 - Seems OK, even if it is not as efficient as the Slow Orbit Feedback System
Conclusion

• Low cost system
 – Using computing resources of FPGA BPM system

• Global orbit correction
 – Distribution of all BPM data around the ring with a dedicated network

• Air-coil correctors over stainless steel bellows with high cut off frequency

• Flexible
 – Easy change of correction algorithm

• First results are very promising
 – System should be available for user operation in the coming months
Acknowledgements

• SOLEIL Fast Orbit Feedback team:
 • Jean-Claude DENARD: Diagnostic Group
 • Lodovico CASSINARI: Diagnostic Group
 • Dominique PEDEAU: Diagnostic Group
 • Laurent NADOLSKI: Machine Physicist
 • Amor NADJI: Machine Physicist
 • Nicolas LECLERCQ: Control Command

• Collaborators from other institutes:
 • Isa UZUN: Diamond Light Source
 • Guenther REHM: Diamond Light Source
 • Eric PLOUVIEZ: ESRF